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Abstract—The paper discusses the theoretical foundations and

the numerical performance of an advanced nonlinear circuit

simulator based on the piecewise harmonic-balance (HB) tech-
nique. The program incorporates updated versions of several

novel algorithmic concepts developed in the last few years. This
results in computational capabilities well ahead of the state of

the art of HB techniques as outlined even in recent review work.
The exact computation of the Jacobian matrix for Newton-

iteration based HB simulation, and the related conversion-
matrix technique for fast mixer analysis, are formulated in the
most general form available to date. Convergence problems at

high drive levels are solved by a parametric formulation of the
device models coupled with an advanced norm-reducing itera-
tion. A physics-based approximation allows the HB equations

to be effectively decoupled in many practical cases, thus bring-
ing large-size jobs such as pulsed-RF analysis well within the

reach of ordinary workstations. The exact Jacobian is used in
conjunction with an exact formula for the gradient of the ob-

jective function, to implement an efficient broadband nonlinear
circuit optimization capability. Finally, a number of examples
are presented, in order to give the reader a feeling of the nu-
merical performance that the program can provide at the

workstation level.

I. INTRODUCTION

I N THE last few years, the harmonic-balance (HB)

method has gained widespread acceptance among mi-

crowave engineers as a simulation tool for nonlinear cir-

cuits. The main advantages of this approach are its ability

to directly address the steady-state circuit operation under

single- or multiple-tone excitation, and its full compati-

bility with the characterization of the linear subnetwork

in the frequency domain, which is usually a prerequisite

for high-frequency applications. Also, harmonic balance
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[1] and in the statistical design [2] of nonlinear micro-

wave circuits.

In exchange for this, the HB method in its conventional

implementations suffers from a number pf shortcomings

[3], which have traditionally restricted its domain of

applicability to selected aspects of the general nonlinear

CAD problem. By harmonic balance, a nonlinear circuit

analysis is reduced to the solution of a nonlinear algebraic

system, which is usually obtained by some sort of itera-

tive procedure. In traditional HB simulators, as the excit-

ing signal levels are increased, the system becomes more

and more ill-conditioned, and the iteration slows down

and eventually fails. Thus it is usually taken for granted

thai harmonic balance handles extremely nonlinear be-

havior poorly. A basic assumption of harmonic balance is

always that the circuit be excited by one or more sinusoi-

dal signals, so that all time-dependent quantities have a

periodic or quasi-periodic steady-state dependence on

time, and a same spectrum consisting of a finite set of

intermodulation products of the exciting tones. Thus it is

generally acknowledged that transient information cannot

be produced by harmonic-balance analysis. The size of

the solving system is equal to the number of state vari-

ables times the number of spectral lines. For multiple-

device circuits excited by multiple tones, this may lead to
nonlinear problems with thousands of unknowns, which

may be impossible to deal with by conventional tech-

niques. This fatally places an upper bound to the size of

the circuit problems that can be solved by the HB tech-

nique, from the standpoint of both memory occupation

and CPU time. One of the main challenges of harmonic-

balance simulation is the extension of this bound.

This paper describes an advanced HB simulator incor-

porating new algorithmic concepts whereby the above-

mentioned limitations of harmonic-balance analysis can

be effectively overcome in many practical applications.

The program makes use of the ‘ ‘piecewise” technique

based on circuit decomposition [4]. This was preferred to

the nodal HB approach [5] because it leads to a solving

system much smaller in size [6], and allows the linear

subnetwork description to be refined to any desired extent

(e.g., by taking into account various kinds of disconti-
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nuities and couplings) without affecting the nonlinear

analysis cost. Section II of the paper reviews an advanced

formulation of the Newton-iteration based piecewise HB

technique, making use of the exact Jacobian matrix in the

general multitone analysis case. The same section also

shows that the HB analysis automatically produces the

fundamental information required for the noise and sta-

bility analysis of a nonlinear circuit. Section III demon-

strates that virtually any limitation of the power-handling

capabilities of harmonic-balance analysis can be elimi-

nated by resorting to a parametric form of the nonlinear

device equations coupled with an advanced norm-reduc-

ing mechanism. Section IV introduces a sparse-matrix ap-

proach explicitly tailored for the needs of the piecewise

technique, allowing many large simulation tasks involv-

ing several thousands of unknowns to be brought well

within the reach of ordinary engineering workstations.

Section V discusses how the combination of the extended

power-handling capabilities and of the sparse-matrix tech-

nique described in the preceding sections opens the way

to the analysis of strongly nonlinear circuits under

pulsed-RF conditions. This implies that transient infor-

mation may be produced by harmonic-balance analysis in

many cases of practical interest. Finally, Section VI shows

that the Newton-iteration based HB analysis can be suc-

cessful y coupled with an optimization algorithm, and that

the numerical optimization of broadband nonlinear cir-

cuits becomes possible in this way, with an algorithmic

efficiency comparable to that of linear circuit optimizat-

ion.

With the above features, this program is believed to

mark a significant advance over other previously reported

harmonic-balance simulators, and to provide a suitable

basis for the further extensions of nonlinear CAD capa-

bilities which will be required for the years to come.

II. NEWTON-ITERATION BASED HARMONIC-BALANCE

ANALYSIS

A. General Nonlinear Analysis

Let us consider a nonlinear microwave circuit operating

in a quasi-periodic electrical regime generated by the in-

terrnodulation of F sinusoidal tcmes of incommensurable

fundamental angular frequencies CO,,Any signal a(t) sup-

ported by the circuit may be represented by the multiple

Fourier expansion

a (t) = ~~~ Ak exp (jo~t) (1)

where ok is a generic mixing or intermodulation (IM)

product of the fundamentals, i.e.,

(2)

In (1), (2) ,$ is an integer harmonic number, k is an

F-vector of harmonic numbers, and (.oUis the F-vector of

the fundamentals. The vector kin (2) spans a finite subset

S of the k-space (containing the origin) which will be con-

ventionally named the signal spectrum. The Fourier coef-

ficient Ak will be named the r’zarnzonic of a (t) at ok (or the

$th harmonic of a (t)). The order of ~k is defined as the 11

norm of k. S@ce we want the signal (1) to be real, S must
be symmetrical with respect to the origin, and A .k = Z@.

We shall also denote by S + the subset of S such that f?k

>Oforke S+.

Let the nonlinear subnetwork be described by the gen-

eralized parametric equations [6]

[

dx dnx
v(t) = u x(t), ~, “ “ “ , ~, x~(t) 1

[

dx dnx
i(t) = w x(f), ~, “ “ “ , -d~, x~(f) 1’(3)

where v(t), i(t) are vectors of voltages and currents at the

common ports, x(t) is a vector of state variables and x~ (t)

a vector of time-delayed state variables, i.e., x~, (t) = xi (t

– 7L). The time delays 1-1may be functions of the state

variables [7]. All vectors in (3) have a same size rq equal

to the number of common (device) ports. This kind of

representation is very convenient from the physical view-

point, because it is in fact equivalent to a set of implicit

jntegro-differential equations in the port currents and volt-

ages. This allows an effective minimizati~n of the number

of subnetwork ports [6], and, what is more important, re-

sults in extreme generality in device modeling capabili-

ties. A major practical implication of this approach will

be demonstrated in Section III.

The quasi-periodic electrical regime of the nonlinear

circuit resulting from a multitone excitation is completely

defined by a set of time-dependent state variables of the

form (1), or equivalently by the vector X of the real and

imaginary parts of their harmonics. The size of this vector

is NT = nd n~, where n~ is the cardinality of the spectrum

S. The entries of X represent the problem unknowns. In

order to compute the harmonics Uk, wk of the nonlinear

subnetwork response (3) to the multitone excitation de-

scribed by a vector X, the program makes use of the mul-

tiple fast Fourier transform (MFFT). The general-purpose

application of this algorithm to nonlinear microwave cir-

cuit analysis was first reported in [8], and a detailed de-

scription of its implementation in a CAD environment is

given in [6]. The excellent performance of the MFFT has

been recently acknowledged by several authors (e.g., [9],

[10]).

The linear subnetwork may be represented by the fre-

quency-domain equation

Y(u) V(Q) + N(fJ) + z(d)) = o (4)

where V(a), Z(a) are vectors of voltage and current pha-

sors, Y(ti) is the linear subnetwork admittance matrix, and
N(a) is a vector of Norton equivalent current sources.

Thus the set of complex harmonic-balance errors at a ge-

neric IM product fi?khas the expression

Ek (X) = y(~k)~k(x) + ~(~k) + Wk(x) (5)
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The nonlinear analysis problem is reduced to the solu-

tion of a nonlinear algebraic system by imposing that all

the HB errors vanish. In order to avoid the use of negative

frequencies, the nonlinear solving system is formulated in

terms of a vector E of real and imaginary parts of the HB

errors given by (5) for k c S+, and is thus written as a

system of NT real equations in NT unknowns, namely

E(X) = O (6)

Although many iterative schemes are available for solv-

ing (6), the Newton–Raphson method has been preferred

for a number of reasons that will become apparent from

the following discussion. More precisely, we use a norm-

reducing Newton iteration defined by [11]

p+ 1) = -@) _
O!,t{ ~[x(n)]) - ‘ E [x(n)] (7)

where X(n) is the nth iterate in the unknown X, and ci. is

a scalar damping parameter. For later convenience (see

Section IV) the Jacobian matrix of E with respect to X

(namely, J(X) in (7)) is partitioned frequency-wise into

2n~ x 2n~ submatrices of the form (k, s e S + )

[1
d Re [E~] d Re [Ek]

d Re [X,] d Im [X,]
Jk,, = (8)

d Im [&] d Im [Ek] “

d Re [X,] d Im [X,]

To ensure the best performance of the Newton algo-

rithm it is of paramount importance that the Jacobian ma-

trix of the HB errors with respect to the unknowns be

computed by an exact algorithm, rather than by numerical

perturbations. This has the twofold advantage of being

faster and much more accurate. The derivatives evaluated

by perturbations rapidly degrade as the number of nonlin-

ear devices and/or harmonics is increased. The required

number of iterations is in some way inversely related to

the accuracy of the Jacobian, so that beyond some thresh-

old, convergence begins to slow down and eventually fails

at all. As an example, let us consider the distributed

DGFE,T mixer schematically illustrated in Fig. 1 [12]. At

typical drive levels, the analysis time for this kind of cir-

cuit decreases by a factor of more than 100 when the per-

turbational derivatives are replaced by the exact ones.

The algorithm for the computation of the exact deriv-

atives is detailed below. General formulae for the piece-

wise analysis under multitone excitation were first pre-

sented in [6], and are further extended here to cover the

case of state-dependent time delays. From (5) we get

forallk, se S+. The derivatives of the voltage and cur-

rent harmonics Uk, wk are found in the following way.

LO

JN

Dram

RF

IN z~,

u u

Fig. 1. Schematic topology of a distributed 4-stage DGFET mixer

For the voltages (e. g.) we first introduce the Fourier ex-

pansions

(lo)

where y. = x, y~ = d“Zx/dt’” (1 ~ m ~ n), and Sd will

be named the derivatives spectrum. When the nonlinear

device equations (3) are very complicated (or even nu-

merically defined), the time-domain derivatives on the

left-hand side of (10) may be computed numerically,

though the best performance of the algorithm is obtained

when exact closed-form expressions can be found for these

quantities.

The derivatives of the voltage harmonics with respect

to the state variable harmonics can now be obtained from

the first of (3) fork, s e S‘:

dUk
= ,,l~o(jQs)’n[r,rt, k-s+ (–l)’’’rtrt,k+s]

d Re [X,]

auk
= ~~oj(j~,)’’’[r,,,,,-,

d Im [X,]
– (–l)mr,n,k +,]

(11)

where

(o s Fn s n). (12)

and X: is the set of pth harmonics of x~ (t) (8 = Kro-

necker’s symbol). Although an exact expression has been

obtained for OX; /r3X,, it is so complicated that a numer-

ical computation of this quantity is usually preferred. In

the case of constant delays, this derivative reduces to b;

exp ( –j ~~~) where ~ is the diagonal matrix of the time

delays [6]. Note that when k, s span the set S+, their

combinations k ~ s span a larger set of the k space, so

that the derivatives spectrum SJ must usually be larger

than S in order to make available all the necessary infor-
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mation. Similar expressions hold for the derivatives of the

current harmonics.

The Newton-iteration based HB technique making use

of exact derivatives is very efficient from the numerical

viewpoint. As an example, let us assume that the mixer

in Fig. 1 is excited by a + 13 dBm local oscillator (cor-

responding to a maximum of the conversion gain) at 3

GHz, and by a –20 dBm RF signal at 3.51 GHz. 4 LO

harmonics and the associated sidebands are retained in the

simulation, for a total of 13 frequencies plus dc. Taking

into account only the essential parasitic effects results in

a circuit topology with 16 device ports and 57 circuit

nodes. In such conditions, the analysis requires about 75

CPU’s on a SUN SPARCstation 2 starting-from zero har-

monics, and treating the Jacobian matrix as dense. A fur-

ther speedup can be obtained making use of the sparse-

matrix technique discussed in Section IV. Also, thanks to

the use of continuation, the algorithm becomes really fast

on a power sweep. As an example, if in the same mixer

analysis the RF power is swept from – 20 to + 3 dBm

with 1 dB steps (the upper bound corresponds to a gain

compression of about 1.2 dB), the average analysis cost

drops to about 10 s per point.

B. Frequency-Conversion Analysis

It has become customary to define frequency-conver-

sion analysis a linearized form of multitone intermodu-

lation analysis which becomes possible when a small in-

dependent signal is fed into a nonlinear circuit operated

in a large-signal periodic or quasi-periodic steady-state

regime. This is a very classic problem that has received a

number of treatments, and has been primarily applied in

the microwave field to mixer analysis under the assump-

tion of a small RF signal superimposed on a large LO

drive.

The basic mathematical tool for a frequency-conver-

sion analysis is given by the conversion equations of the

nonlinear subnetwork. Let us assume that a steady-state

of the form (1) is perturbed by the injection of a sinusoidal

signal of angular frequency o. If the perturbation is small

enough, it can be studied by linearizing the nonlinear sub-

network equations in the neighborhood of the unperturbed

steady state. This implies that thle perturbed steady state

may be represented as a quasi-periodic regime containing

only intermodulation products of first order with respect

to the perturbation. A generic signal supported by the cir-

cuit thus takes the form

a(t) = a,,(t) + ~.~ AA~ exp [j(ti + Klk)t] (13)

where a.. (t) is the unperturbed steady state given by (1).

Note that the signal on the right-hand side of ( 13) is com-

plex, but this has no influence an the analysis since we

are only interested in the relationships among the side-

band phasors.

Due to the linearization, the phasors of the voltage and

current harmonics at the sidebands are linearly related by

the so-called conversion equations of the nonlinear sub-

network. If the nonlinear devices are, described by the

parametric equations (3), the conversion equations are also

expressed in parametric form as follows [13]

AV= PAX

AI=QAX (14)

Specifically, these equations are linear maps between

the spectra of the perturbations on voltages (A V), cur-

rents (AZ), and state variables (AX). The corresponding

linear operators P, Q are called conversion matrices. From

(14) any equivalent circuit description such as the imped-

ance, admittance, or scattering conversion matrix can be

derived by conventional circuit algebra.

The conversion matrices may be computed by replacing

the perturbed expressions (13) of the state variables into

(3) and making use of (10). If we partition P and Q fre-

quency-wise into complex submatrices of size nd x nd (k,

s c S), we obtain the final result

where the D matrices are coefficients of Fourier expan-

sions similar to (10) for the derivatives of the second of

(3). The nd X nd diagonal matrices B appearing in (15)

are the coefficients of the Fourier expansions

exp { –j (m + 0,) ~[x,, (t)]}

= ~~, BP(CJ + fl,) exp (jfl,t). (16)

In the case of constant time delays, Bp (u + Q,) reduces

tot$exp [–j(u + fl, )~].

A comparison between ( 15) and (9), (11) makes evident

the close relationship existing between the conversion

matrix and the Jacobian matrix. The key point is that the

essential information required to generate the conversion

matrices (specifically, the coefficients C, D) is the same

needed for the computation of the Jacobian (the additional

Fourier transformations (16) are only required in the case

of state-dependent time delays). As it is well known, the

conversion matrices provide the computational basis for a

generalized noise and ‘stability analysis of the nonlinear

circuit [13]. It is thus clear that the Newton-iteration based
harmonic-balance technique appears to be the best can-

didate for the development of a general-purpose nonlinear

CAD system integrating several advanced simulation ca-

pabilities in a most efficient way. We shall see in Section

VI that the same conclusion can also be extended to non-

linear circuit optimization,
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The frequency-conversion approach is usually compu-

tationally convenient with respect to the full nonlinear

analysis for the simulation of microwave mixers at low

RF power levels, especially for complex multiple-device

topologies. As an example, the analysis of the mixer in

Fig. 1 with an LO power of +13 dBm takes about 12 s

on a SUN SPARCstation 2. The results are virtually iden-

tical to those obtained from the full nonlinear analysis with

– 20 dBm RF power. Of course, the dynamic range of the

mixer cannot be determined by this method.

III. ENHANCING THE POWER-HANDLING CAPABILITIES

The iteration (7) (as well as any other iterative scheme)

may exhibit convergence problems at high drive levels,

in a way strongly dependent on the particular problem

being considered. Specifically, some of the most impor-

tant factors affecting the speed of convergence or the abil-

ity to converge at all, are the degree of device nonlin-

earity, the number of intermodulating tones, and

topological aspects such as the number of nonlinear de-

vices and the way they are interconnected. For instance,

the exponential behavior of the conduction current of p-n

and Schottky barriers is usually a major source of numer-

ical ill-conditioning [14], and so is the unidirectional na-

ture of the nonlinear transconductance of microwave ac-

tive devices [1 1].

The exact computation of the Jacobian matrix described

in the previous section usually gives an important contri-

bution to the robustness of the analysis algorithm, but is

not sufficient to cover all cases of practical interest. In

order to improve the power-handling capabilities, many

harmonic-balance simulators make use of source step-

ping, which can be considered a CAD implementation of

the mathematical concept of continuation, or homotopy

[15]. Source stepping is computationally inefficient,

though, unless a specific interest exists in the results of a

power sweep, since it expands a single analysis into a se-

quence of HB simulations. What is more important, this

technique is far from providing a general solution to the

problem, since in many ill-conditioned cases the step size

required to achieve convergence is too small, and the

analysis becomes exceedingly slow. As a limiting case,

the algorithm fails to converge if the step size drops below

the computer precision. In this section we describe a to-

tally different approach, based on a special parametric de-

scription of the device nonlinearities coupled with an ad-
vanced norm-reducing iteration scheme [16]. It will be

shown that this method virtually eliminates any limitation

of the power-handling capabilities of HB analysis, with

no need for source stepping.

In order to illustrate the modeling approach we consider

the exponential junction law, which is by far one of the

most critical issues [14]. The conventional p-n or

Schottky-barrier current equation is

i(t) = Is {exp [au(t)] – 1} (17)

At high drive levels the exponential function appearing in

(17) is a strong source of numerical ill-conditioning. To

replace (17) by a well-conditioned junction model for v

> 0, we resort to a parametric representation of the form

(3) making use of a non-conventional choice of the state

variable. Instead of the junction voltage u(t), we take as

the state variable a fictitious quantity x(t) which is iden-

tical to the junction voltage below some threshold VI >

0, but is defined as a linear function of the current above

VI. By requiring the voltage and current and their deriv-

atives to be continuous at x = VI, we obtain the following

set of equations:

v(t) = u [x (t)]

[

Vi + ~ln {1 + a[x(t) – VI]}

—— if VI S x(t) (18)

x (t) if x (t) s V,

i(t) = w [x (t)]

[

Is exp (CYVI){l + a[x(t) – V,]} – Is

—— if VI S x(t) (19)

Z~{exp [ax(t)] – 1} ifx(t) S V,.

Equations (18) and (19) give an exact parametric rep-

resentation of the forward current-voltage characteristic

(17) by means of functions which are very well condi-

tioned for all values of x(t). VI plays the role of a free

parameter to be suitably chosen in order to optimize the

performance of the HB algorithm. If we introduce the

slope G1 = di /dv at v = V,, we obtain from (17) V, =

in (G1 /cY1~)/a. Experience shows that the choice G, =

1 results in excellent numerical behavior of the model in

most practical situations.

In order to show the beneficial effects of the above

method on the convergence properties of the Newton it-

eration, we resume a very famous convergence test con-

sisting of the local-oscillator analysis for a simple wave-

guide mixer containing a resistive diode as the only

nonlinear component. This test was first considered by

Kerr [17] and subsequently used for comparison by Hicks

and Khan [18], Camacho-Peiialosa [19], and Schiippert

[20]. The ability to converge is measured in terms of the

number of iterations required to achieve a minimum rel-

ative accuracy of 10–3 on all the spectral components, and

the rectified dc component of the diode current is taken

as an indication of the drive level. The analysis uses 16

local oscillator harmonics and the iteration is started from

zero harmonics in all cases.

Fig. 2 shows a performance comparison among a num-

ber of iterative approaches to the solution of the system

(6), that is: 1), Hicks and Khan’s constant-p fixed-point

iteration [18]; 2), Camacho-Peiialosa’s fixed-point itera-

tion with automatically updated convergence parameters

[19]; 3), Schuppert’s iteration making use of convergence
parameters related to the diode effective harmonic imped-

ances [20]; 4), an undamped Newton iteration (a. = 1 in



RIZZOLI et al,: STATE-OF-THE-ART HARMONIC-BALANCE SIMULATION

lCOO

100

N

10

1

● Hicks-Khan 0 Camacho x Schiippefi
(p= 0.025) Peiidosa

❑ Undamped ■ Undamped
Newton Newton +

parametric
mode~mg

●

❑ ~o ,,4
.

“ ●;..*+++
#

o
0

0

0

x ❑

X“ ❑

❑
❑uxxxx xxx

❑

to” . ■ ■■■■■
■ ■

■■~
❑ m ■■ mlmm ● ■ Wmam

0.1 1 101 100 lm

DC diode current (MA)

Fig. 2. Performance comparison of several harmonic-balance algorithms

in the solution of Kerr’s waveguide diode mixer.

(7)) based on the conventional model (17); 5), an un-

damped Newton iteration based on the parametric model

(18), (19). Typically, for each -iteration scheme there ex-

ists a critical power level beyond which convergence

slows down or is lost at all. In particular, the convergence

properties of the conventional Newton iteration are defi-

nitely poor: the iteration fails to converge above a dc cur-

rent of the order of 1.5 mA, cm-responding to a drive level

of only 15 mW. Note, however, that the use of the para-

metric model results in a dramatic increase of the power-

handling capabilities of the analysis algorithm. In this case

the input power range for which convergence is achieved

is found to be substantially unbound, and the number of

required iterations remains fairly constant up to very high

power levels, with no need for source stepping. The range

shown in Fig. 2 goes ‘up to a current level of 1 A, corre-

sponding to an input power of more than 1 kW, but this

does not represent an upper bound.

Generally speaking, this approach can be extended to

all major sources of ill-conditioning in the most com-

monly used nonlinear device models, including forward

conduction and breakdown effects in diodes and FET’s,

diffusion capacitances in p-n diodes and bipolar transis-

tors [16], [21], and so on. So this really represents the

seed of a generalized modeling philosophy marking a big

step towards the elimination of large-signal problems in

harmonic-balance analysis.

The other key mechanism of convergence improvement

that has been implemented in the program is norm reduc-

17

tion. Given the basic iterative solution scheme (7), we

have a norm-reducing iteration when the damping param-

eter is updated at each step in such a way that the norm

of the residual error vector decreases with respect to the

previous step, i.e.,

[[E[x(n+ ‘)]1/ < Ipqxqll (20)

The norm may be generally defined as

h3[X(n)]ll = dET[X(n)] AnJY[X(n)] (21)

where An is an arbitrary positive-definite matrix. In prac-

tice, in order to get as much as possible from this basic

idea, the coefficient a. in (7) is chosen in such a way as

to minimize the norm along the direction of the iteration

update, at least approximately by a coarse one-dimen-

sional search.

The commonly adopted definition of norm is the Eu-

clidean or ~ norm which is obtained from (21) when An
is an identity matrix. With this choice, norm reduction

can be used in conjunction with virtually any iteration

scheme. As an example, Haywood and Chow [22] used

norm reduction to improve the performance of Hicks and

Khan’s fixed-point iteration [18]. With the Newton iter-

ation, superior performance may be obtained making use

of the Newton-Update (NU) norm introduced by Yeager

and Dutton [11], which is defined by

An = {JTIX(”)]} -’{JIX(”)]) -l. (22)

For computational purposes the NU norm is replaced by

the Euclidean norm of the undamped Newton update com-

puted at the n~ew point with the Jacobian of the previous

step [11], i.e.,

lIEIX(n+ ‘)]ll~u = II {.l[X(~)]]-’EIX(n+ ‘)]1/12. (23)

The NU norm was used in [11] in the time-domain sim-

ulation of nonlinear circuits, and has been found by the

present authors to be equally effective in harmonic-bal-

ance applications [16]. The damping mechanism based on

the Euclidean norm emphasizes a uniform or unweighed

reduction of lthe residual errors. This has been observed

[11] to be very dangerous for those situations where the

Jacobian matrix has large nonsymmetric off-diagonal

terms, since the steepest-descent direction of the norm

tends to become nearly orthogonal to the direction of the

Newton update. If this happens, typically in the early steps

of the iteration, no amount of damping can significantly

reduce the norm, the damping parameter tends to zero and

the iteration fails. Unfortunately, this situation is rather

commonplace in microwave circuit analysis by the har-

monic-balance method, since it is typical of nonreciprocal

gain elements such as FET’s or bipolar transistors, espe-

cially when cascaded in multistage topologies. With the
NU norm the residual errors are weighted by the elements

of the inverse Jacobian before computing the Euclidean

norm. The magnitude of a generic element of the resulting

vector indicates how far the corresponding unknown is

from achieving convergence, and may thus be interpreted

as a measure of the relative priority of such unknown in
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the overall solution process. The damping strategy thus

emphasizes a uniform reduction of such priorities through

a weighted reduction of the residual errors. The superior

performance of this approach is due to the fact that the

steepest-descent direction for the NU norm is always

coincident with the direction of the Newton update [11].
Thus even in the above-mentioned ill-conditioned cases

the danger of convergence failure in the early steps of the

iteration is most often eliminated. The damping factor

usually oscillates but does not approach zero along the

iteration.

In order to illustrate the impact of these techniques on

the power-handling capabilities of harmonic-balance

analysis, we report on a three-tone intermodulation test

for the distributed amplifier depicted in Fig. 3. This is a

simple small-signal device optimized for a 5 dB gain

across the 2– 18 GHz band, with an output power of +20

dBm at the 1 dB compression point. The numerical results

are given in Fig. 4. The ability of the analysis algorithm

to converge is measured in terms of the number of itera-

tions required to achieve a relative accuracy of 10-5 on

all the intermodulation products of the three fundamen-

tals, up to the 4th order. This number is plotted in Fig. 4

against the available input power per tone P,.. The com-

parison is among four different implementations of the

Newton method, with and without parametric modeling

and NU-norm reduction; in all cases, the analysis is al-

ways started from zero harmonics without source step-

ping.

As usual, the plain Newton iteration using the conven-

tional models has poor behavior, and only converges in

the linear region, up to approximately P,n = +10 dBm.

This bound is expanded to P,n = +24 dBm by using para-

metric modeling without norm reduction, and to Pin =

+50 dBm with norm reduction and conventional models.

Note that in this special case the convergence improve-

ment provided by parametric modeling is not as important

as that obtained by norm reduction. However, in the re-

gion where both methods are successful, the former is def-

initely faster since it does not require the iterative search

for the optimum a. in (7). Finally, coupling norm reduc-

tion with parametric modeling leads to an extremely ro-

bust analysis algorithm, which in the present case can

handle up to + 100 dBm (10 MW) per tone, with a fairly

constant number of iterations. An interesting point is that

we need not increase the number of harmonics to achieve
convergence even at extremely high power levels, though

of course the accuracy of the solution will generally de-

pend on this number. Similar results have been obtained

for multistage cascaded topologies [16] and even for

class-C bipolar transistor amplifiers [23].

It is now clear that the techniques described in this sec-

tion can broadly overcome those power-handling limita-

tions that have long been considered an important disad-
vantage of harmonic balance in comparison with other

competing nonlinear analysis algorithms such as time-do-

main techniques. Although in practice we usually do not

have to handle the extreme power levels that are referred

o 100 urn
-

Fig. 3. Schematic topology of a distributed 3-stage FET amplifier.
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Fig. 4. Results of a 3-tone intermodulation analysls of the distributed am-

phtier.

to in Fig. 4, the availability of an absolutely reliable HB

analysis mechanism may be of paramount importance for

a successful performance of many nonlinear design tasks.

As an example, for an efficient optimization of broadband
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power circuits it is essential that the analysis algorithm

does never fail, even for circuit configurations that may

be very ill-conditioned and hardily meaningful, but many

nevertheless be encountered during the iterative search.

Also, in such cases one usually does not want to use

source stepping nor to increase the number of harmonics

beyond the minimum dictated by accuracy requirements,

in order to limit the computational effort. Thus the above-

described techniques can significantly broaden the do-

main of practical application of nonlinear CAD methods.

IV. SPARSE-MATRIX AIWROACH TO LARGE-SIZE

PROBLEMS

The considerable advantages of the Newton iteration

making use of the exact Jacobian matrix as a numerical

approach to the solution of the hlarmonic-balance system

(6), have been demonstrated in the preceding sections.

However, the straightforward application of this tech-

nique may become problematic when the number of scalar

unknowns of the solving system becomes large, as it may

be the case for multiple-device circuits under multitone

excitation. This is due to the fact that the storage and fac-

torization of the Jacobian by ordinary means are practi-

cally impossible when the number of unknowns exceeds

some upper bound depending on the computer system in

use. As a typical example, let us consider the analysis of

two-tone intermodulation distortion in a mixer of the kind

shown in Fig. 1. Following Maas [24], the signal spec-

trum for this analysis is defined by

where the subscript 1 is used for the local oscillator. In

(24) No is the number of LO harmonics, and M is the

maximum order of IM products of the two RF input tones

that are taken into account. For N’. = 4, M = 3 the signal

spectrum contains 225 lines, arid the analysis requires

3600 unknowns (nd = 16). In this case, the storage of the

full Jacobian would require about 104 MB of memory,

and one factorization would take many hours of CPU time

on a typical workstation. Another class of problems re-

sulting in very large-size numerical jobs will be discussed

in the next section.

An obvious way to overcome these difficulties would

be to resort to large computer systems such as vector pro-

cessors [25]. However, in many practical applications

where extreme power levels are not of concern, the ex-

ploitation of sparse-matrix techniques makes it possible

to achieve a good compromise among power-handling ca-

pabilities, speed of convergence and memory occupation.

The key idea is to set to zero selected entries of the Ja-

cobian matrix according to some physical or mathematical

criterion, in order to enhance its sparsit y and thus to re-

duce memory occupation and factorization time. In gen-

eral, computing the Jacobian with the highest possible ac-

curacy maximizes the robustness and minimizes the

number of iterations required for convergence of the

Newton algorithm. However, in large-size problems

where the factorization of the Jacobian represents a major

contribution to the overall analysis cost, the use of an ar-

tificially sparse Jacobian may be computationally conve-

nient, due to the tradeoff between number of iterations

and cost of each one.

The actual implementation of these ideas may change

considerable y depending on the circuit analysis strategy.

With the nodal approach, the circuit is analyzed as a whole

without partitioning, and the node voltages are chosen as

state variables [5]. The number of scalar unknowns is thus

much larger than with the piecewise technique: for in-

stance, the above-mentioned mixer IM analysis requires

12825 unknowns even if only the essential parasitic ef-

fects are accounted for (57 circuit nodes). In exchange for

this, the Jacobian matrix is naturally sparse because so is

the nodal admittance matrix, so that this method can rou-

tinely rely upon sparse-matrix techniques. A sparsity in-

crease can thus be obtained by neglecting those entries

that are smaller in magnitude than a specified threshold.

This has the immediate advantage of enhancing the effi-

ciency of the sparse-system solver [5].

With the piecewise method based on circuit decompo-
sition, the situation is somewhat more complicated, since

in this case the starting point is a completely dense Jaco-

bian. This implies that the achievable sparsity, which may

be typically of the order of 5 to 10% for medium-size

jobs, is not sufficient for satisfactory operation of standard

sparse-system solvers. A possible way of overcoming this

difficulty is to create a sparsity pattern with the two prop-

erties of having a very simple structure and being a priori

known [26], [27]. The basic idea for the method imple-

mented in our program is suggested by the expressions

(11) of the exact derivatives. As it was mentioned in Sec-

tion II, the derivatives spectrum sd used in the expansions

(10) is generally different from the signal spectrum S. At

very high drive levels all the coefficients appearing in (11)

must be taken into account to ensure good convergence,

so that Sd 3 S. At lower drive levels, a good tradeoff

between power-handling capabilities and analysis cost can

usually be obtained by artificially reducing Sd and setting

to zero in (11) all the coefficients for which k i- s t Sd.

When the Jacobian is organized in submatrices frequency-

wise in the way described in Section II, what one gets is

a pattern of zero and nonzero submatrices of the form (8).

Each submatrix is essentially dense because so is the ad-

mittance matrix of the linear sub network.

Generally speaking, this technique is very powerful for

several reasons. Since the sparsity pattern is known a

priori, one can avoid the use of general-purpose sparse-

matrix solvers, and implement instead a family of spe-

cialized solvers, each individually optimized for a specific

matrix structure, and making use of specific rules for ad-

dressing the nonzeros. This leads to an effective optimi-

zation of both memory storage and CPU time, and thus

to an efficient performance of the sparse-system solvers

even with very moderate degrees of sparsity, say of the

order of 10%. Also, the sparse Jacobian can often be re-
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duced to very simple structures for which the generation

of fill-ins is a minimum or none at all. Finally, the struc-

ture of the sparse-matrix solver depends on the spectra S,

Sd, but is topology-independent, i.e., the same solver can

be applied to the analysis (with given spectra) of any non-

linear circuit, irrespective of its physical configuration.

A very important family of derivatives spectra is de-

fined by the following equations:

[

‘H

s~ L
O < ,;l Ik,l < D

(25)

ki=O (H+l<is F)

where D, H are integers and H < F. Due to (11), under

the second of (25) the mixing products & & are consid-

ered uncoupled unless \kil = \~i\ for H + 1 < i = F,

because otherwise k f s @ Sd. Now let the signal spec-

trum be partitioned into H-dimensional subsets such that

the mixing products belonging to each subset have the

same Ikil for H + 1 < i < F. Since under the second of

(25) any two mixing products belonging to different sub-

sets are uncoupled, the Jacobian matrix is reduced to a

block-diagonal form, and the solution of the linear system

required to compute the Newton update (7) is reduced to

the solution of a number of uncoupled systems of smaller

size, with a dramatic increase of numerical efficiency and

an equally significant memory saving. From (11) and the

first of (25) it is also evident that the parameter D repre-

sents the maximum difference between the orders of any

two IM products that are considered coupled under the

assumptions (25). It is thus possible to order the products

belonging to each subset in such a way that the corre-

sponding block subsystem be banded with a bandwidth

depending on D. The best ordering criterion depends on

the definition of the signal spectrum. This allows a band-

matrix solver to be used for each block subsystem, with

a further performance increase. If the first of (25) is sup-

pressed, all the block subsystems are dense.

In many cases of practical interest, (25) do not only

represent a mathematical assumption, but can be justified

on a sound physical basis. Consider for instance an F-tone

intermodulation problem, and assume for simplicity that

the time delays in (3) are constant. If the input frequencies

may be ordered in such a way that the last F – H + 1 are

very close to each other in a relative sense, that is,

\@i - ~,1 << W, (H Si, jSF; l<k <F)

(26)

the IM products are clustered inside narrow frequency

windows separated by large gaps. This kind of situation

is very common in practice. In this case the spectrum may

be conveniently described in terms of an auxiliary set of

fundamentals defined by

~! =
1 ‘Ji (l~i <H)

@; = lo, — LJHI (H+l<i <F). (27)

Due to (26), with the use of (27) each mixing product of

the form (2) is a linear combination of H high and F – H

low frequencies. If we now consider a generic waveform

(1) as a function defined on a multidimensional time space

[a;t, (IJt, @~r, “ “ “], then under (27) the last F – H time

variables are slowly changing with respect to the first H

ones. In such conditions the second of (25) takes the

meaning of a quasi-stationary approximation. This means

that the slow dependence on time of the derivatives (10)

through q’ t (i 2 H + 1) is considered negligible in com-

parison with the fast dependence through alt, “ c . OJHt in

the time window (sufficiently longer than 27r /col) used to

compute the FFT. From this approximation, the second

of (25) follows immediately. A similar conclusion can be

reached when the last F – H of the exciting frequencies

are naturally small with respect to the first H ones, as it

is the case in most modulation problems. In all such sit-

uations the decoupling of the equations occurs almost nat-

urally, so that the Newton iteration based on the block-

diagonal Jacobian is usually very robust. The first of (25)

has simply the meaning of a possible truncation criterion

for the multiple Fourier expansion of the derivatives. In

any case the approximation is applied to the derivatives

only, so that the solution of (6) is exact, provided that

convergence be achieved.

In some situations, a structurally similar decoupling of

the Jacobian into diagonal blocks can also be arrived at

by the recently proposed [28] “frequency-windowing

harmonic-balance” (FWHB) technique. The time-domain

quasi-stationary approximation leading to the second of

(25) is in a sense the dual of the assumption of constant

linear-subnetwork admittance in each frequency window

made by the FWHB [28], which is equivalent to consid-

ering Y(o) a slowly changing function of the “small”

O;. Of course, (25) only represents one possible applica-

tion of the general MFFT-based sparse-matrix technique

discussed in this section.

The application of the sparse-matrix technique to the

above-mentioned mixer intermodulation problem is illus-

trated in Fig. 5. For this case we choose H = 1 in (25),

and partition the spectrum defined by (24) into one-di-

mensional subsets of size (2 No + 1) X (2 No + 1) in

terms of submatrices of the form (8). Each subset is char-

acterized by constant values of Ik21, Ik~ [. Furthermore, if

we choose D = 3 in (25) and order the IM products in

each subset for increasing values of k,, we obtain the

sparsity pattern depicted in Fig. 5, where shaded and

blank rectangles are representative of nonzero and zero

submatrices, respective y. As expected, the Jacobian is

reduced to a block-diagonal structure, and each uncou-

pled subsystem is banded (with bandwidth D in this spe-

cial case). In this way, the memory occupation of the Ja-

cobian drops to about 8 MB, which is compatible with the

memory resources of most typical engineering worksta-

tions. Also, the cost of one Newton iteration is reduced

by a factor of about 300 with respect to the dense-Jaco-

bian case on a SUN SPARCstation 2 in double-precision

arithmetics. The tradeoff with power-handling capabili-

ties is excellent for ordina~ applications. With the spars-

ity pattern depicted in Fig. 5 the circuit can be analyzed
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Fig. 5. Patternof nonzerosubmatricesof the Jacobianfor a 2-tone inter-

modulation analysis of the distributed mixer (H = 1, D = 3).

without convergence problems well beyond the LO power

level for which conversion gain is a maximum at low RF

power levels, and well beyond the 1 dB compression point

in maximum-gain conditions.

Fig. 6 shows the computed re;sults of the mixer inter-

modulation distortion analysis with CJ,/2m = 3 GHz,

~2/27r = 3.,51 GHz, w3/27r = 3.511 GHz. The (equal)

power levels of the two RF tones are swept from – 20 to

– 1 dBm in 1 dB steps, with the upper bound now corre-

sponding to a gain compression of about 1.3 dB because

of the two-tone RF excitation (see section II). The accu-

racy of the results was checked and found excellent by a

Cray analysis run with 8 LO harmonics and intermodu-

lation products up to the 5th order [25]. The average anal-

ysis cost on the SUN SPARCstation 2 worl&tation is about

120 s per point. The same approach can be successfully

applied even to simulation problems of smaller numerical

size. As an example, a regular analysis of the same mixer

under the same conditions described in Section II (432

scalar unknowns) may be carried out with a derivatives

spectrum defined by (25) with H = 1, D = 1. The single

low-level analysis (PLO = +13 dBm, PR~ = –20 dBm)

takes about 25 CPU s on the SUN 2, and thus becomes

cost-competitive with the frequency-conversion analysis.

In addition, the mixer dynamic range can be determined

in this way without any convergence problems.

An important limiting case of the sparse-matrix ap-

proach is obtained when the ‘derivatives spectrum contains

the dc component only (D = O in (25)). This leads to the

so-called block-Newton iteration [29], whereby only cou-
plings between identical frequency components are taken

into account. Since this is a rather drastic approximation,

this kind of analysis has limited power-handling capabil-

ities, and is often insufficient tot establish the dynamic

range of typical nonlinear circuits. Nevertheless, this ap-
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Fig. 6. FundamentalIF output at U2 - u,, and 3rd order IF intermodu-
Iation product at 2(03– tiz – W, for the distributed mixer under 2-tone RF
excitation.

preach is very useful for the fast computation of some

important small-signal nonlinear quantities such as the 3rd

and 5th order intercept points. With the block-Newton it-

eration, both the memory occupation and the factorization

time of the J;acobian become negligible, and the har-

monic-balance analysis may become cost-competitive

with small-signal techniques such as Volterra series or the

related methodl of nonlinear currents [30], [31].

As a typical example, let us consider once again a three-

tone intermodulation analysis of the distributed amplifier

shown in Fig. 3 (6 device ports and 77 circuit nodes). AI

low input power levels, say – 10 dBm per tone, the com-

putation,of near-carrier intermodulation products up to the

5th order by the block-Newton iteration coupled with the

multiple fast Fourier transform algorithm takes about 25

s on a SUN SPARCstation 2. What is more important,

the nonlinear aspects give only a minor contribution, of

the order of 24 percent, to the overall analysis cost, which

is dominated by the linear subnetwork analysis. It is thus

clear that the use of a different frequency-domain nonlin-

ear analysis a]pproach could only result in a minor im-

provement of the simulation speed. Thus, although the

method of nonlinear currents (e.g., in the implementation

proposed by Maas [32]) is probably the fastest way of

carrying out a. low-level multitone analysis, the block-

Newton HB technique in this and other similar cases can

reach a comparable efficiency. However, in the present

case convergence can be “obtained only up to a gain

compression level of about O.4 dB even making use of all

the methods for convergence improvement discussed in

Section III.

As it may be easily inferred from the numerical per-

formance information reported above, the sparse-matrix

approach described in this section can literally outperform

other more conventional harmonic-balance algorithms,
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including some commercial ones, with speedup factors

that may range up to two orders of magnitude or more for

relatively complex circuit topologies. It thus opens the

way to a number of advanced applications of the HB tech-

nique that would be hardly feasible by standard methods,

such as the frequency-domain transient simulations dis-

cussed in Section V.

V. PULSED-RF AND TRANSIENT ANALYSIS

The simulation of nonlinear microwave circuits oper-

ated under pulsed RF conditions is an intriguing problem

from the CAD viewpoint. In principle one could ob-

viously resort to time-domain simulators [33], which can

handle any signal waveform without restriction. How-

ever, the well-known limitations of time-domain tech-

niques in the treatment of passive circuits virtually restrict

this kind of approach to simple topologies only containing

lumped elements and elementary types of distributed

components. On the contrary, many practical microwave

circuits contain passive integrated components which can

only be characterized in the frequency domain by electro-

magnetic methods, especially at high frequencies [34].

For these cases a nonlinear analysis in pulsed RF condi-

tions is still an open problem.

When the pulses form a periodic sequence, a pulsed RF

regime is a special form of steady-state regime. It is thus

intuitive that numerical techniques explicitly aimed at

steady-state analysis, such as harmonic balance, should

represent a possible way to do the job. The purpose of

this section is to show that this kind of analysis is, indeed,

feasible making use of a harmonic-balance simulator in-

corporating the previously described capabilities. An in-

teresting point is that, for pulse durations long enough

with respect to the RF period, the analysis approach pre-

sented in this section also provides a direct way of per-

forming a transient analysis by harmonic-balance meth-

ods. It has been found that in the case of lumped-element

topologies that can be treated in the time domain, the re-

sults of our HB technique are consistent with those pro-

vided by classic time-domain simulators such as SPICE.

Let us consider a nonlinear circuit excited by an RF

sinusoidal source of angular frequency u, (carrier) mod-

ulated by a periodic signal s (t) of period 27r/wz. For the

applications of interest in this section, s(t) is ideally a

sequence of rectangular pulses, which for practical pur-
poses is approximated by a truncated Fourier expansion.

Thus we have

s (t) = f Sk, exp ( jkzw2t) (28)
kz = –N

where S–~z = S:,. In practice, a non-ideal pulse wave-
form with finite rise and fall times [35] is used in order to

keep these quantities under control. As an example, in

Fig. 7 the sum of (28) with N = 50 is plotted against time

for a sequence of rectangular pulses having a duty cycle

of 30% and rise and fall times equal to 5 % of the pulse

repetition time.

In agreement with (1), the unmodulated input signal is

represented by

v(t) = 2 Re [Vl exp (jC.J1t)] (29)

so that the modulated excitation becomes

U (t) = i?)(t) s (t)

From a conceptual viewpoint, we can think of (30) as

being the output of an ideal amplitude modulator whose

two inputs are fed by (28) and (29). Thus a generic non-

linear circuit excited by (30) can be replaced by an aug-

mented circuit (obtained by connecting the ideal modu-

lator to the input port of the original one) excited by two

periodic sources of frequencies al, tiz. In general, the

analysis of a nonlinear circuit under pulsed RF conditions

can thus be treated as a two-tone IM analysis problem. In

the mixer case, an RF signal of the form (30) is super-

imposed on the local-oscillator regime, so that by a sim-

ilar argument the analysis can be reduced to a three-tone

IM problem.

In the two-tone case, a suitable definition of the signal

spectrum is [36]

(31)

where M is the number of carrier harmonics to be consid-

ered in the CW analysis of the same circuit. For mixer

analysis a spectrum similar to (31) is repeated on each

side of every local-oscillator harmonic of interest.

For computational purposes, our harmonic-balance

simulator was modified to accept modulated sources be-

sides conventional CW sources as standard excitations.

The Fourier coefficients of the modulating signal are com-

puted once for all and are stored in the computer memory.

The RF source is simply defined by means of the complex

amplitude 2 VI and of the indication that the source is

modulated. Then, according to (28), the program auto-

matically connects in series to the RF input port 2N + 1

sinusoidal sources of complex amplitudes 2 VI S~, and fre-

quencies COl + kzq (O < \k2[ < N). At this stage the
multitone harmonic-balance analysis can proceed in the
way discussed in Section II. It is noteworthy that the pro-

gram also allows the modulation defined by (28) to be

applied to the bias sources. The two cases do not differ

conceptually nor computational] y, and in particular the

intermodulation spectrum may always be defined by (31).

In this case the program connects in series to the bias port

of interest a dc source E. So and N sinusoidal sources of
complex amplitudes 2E0 Skz at frequencies k2uz (1 s kz

< IV), where E. is the unmodulated bias voltage. The
pulsed bias can also be offset in order to include circuits

periodically switched between two different bias levels.
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Fig. 7. Approximation of a periodic sequence of rectangular pulses having 5 % rise and fall times and 30% duty cycle

(50 harmonics).
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This facility is intended to allow the simulation of a num-

ber of interesting events such as tumon transients in am-

plifiers and oscillators, and tuning transients in VCO’S.

Further work on these subjects will be reported else-

where.

The pulsed-RF analysis outlined in this section is a

rather ill-conditioned job from the numerical viewpoint.

The main numerical difficulties arise from the following

aspects.

1) The problem is strongly nonlinear because of the si-

multaneous occurrence of heavil:y driven devices (such as

saturated FET’s, or BJT’s in class-C operation) and mul-

titone excitation.

2) The number of spectral components to be balanced

is usually large. Relatively large values of N are required

to minimize the unwanted ripples produced by the trun-

cation of the series (28), and several carrier harmonics

must be considered for circuits operating in saturation.

The use of several hundreds of frequencies is thus cus-

tomary even for simple circuit topologies, and this often

leads to nonlinear solving systems with thousands of sca-

lar unknowns.

As a consequence, the advanced features described in

the previous sections usually represent a prerequisite for

the HB simulator to be able to carry out successfully this

kind of analysis with practically acceptable efficiency. In

particular, the mechanisms described in Section “III for en-

hancing the robustness of the iteration, and the sparse-

matrix techniques introduced in Section IV are of primary

importance. This will be illustrated by a typical example.

Let us consider a microstrip amplifier having the to-

pology schematically illustrated in Fig. 8. The FET is a

600 ~m device described by a mctdified Materlka and Kac-

przak model [37], and radial microstrip stubs are used both

in the RF matching sections and in the bias circuit. The

amplifier has a saturated power output (at the 4 dB gain-

compression level) of +25.3 dBnm with 6 dB of associated

gain across a 2 GHz band centered around 10 GHz. The

input signal is a 10 GHz sinusoid modulated by a periodic

sequence of rectangular pulses hlaving a pulse repetition

frequency of 10 MHz, rise and fall times of 5 ns, and a

,duty cycle of 30% (see Fig. 7). The analysis is carried

out with the spectrum defined by (31) with M = 4 and N

P1 -
~ .~ FET +

Parasitic

LOAD

RFIN ~

—

Fig. 8, Schematic topology of a microstrlp power amplifier using radial

stubs

= 50, for a total of iz~ = 909 spectral lines. This corre-

sponds to 1818 scalar unknowns, and to a memory occu-

pation of 26.5 MB for the full Jacobian.

In spite of the simple circuit topology, this problem is

difficult to handle on a workstation with 16 MB of phys-

ical memory, because the data transfers to and from the

virtual memory make the Jacobian factorization process

very inefficient. Thus, for a general-purpose implemen-

tation of the pulsed-RF analysis approach, the use of the

sparse-matrix technique discussed in Section IV is vir-

tually mandatory. The excellent results obtained by this

method making use of the derivatives spectrum (25) are

shown in Fig. 9. In this figure the analysis time on the

SUN 2 is plotted against the peak input power, for H =

1 and D = 4. With this choice the structure of the sparse

Jacobian is similar to the one shown in Fig. 5. The only

differences are that the number of uncoupled subsystems

is now equal to 51, and that each block subsystem has a

bandwidth of 4 in terms of nonzero submatrices. The

memory occupation of the Jacobian is only 0.52 MB. The

peak input power levels considered in Fig. 9 range from

+ 10.3 dBm, which is well inside the linear region (ap-

proximately 0.1 dB gain compression), up to +25.3 dBm,

which is far into the saturation region (O dB gain level,

corresponding to 10 dB compression). In all cases the

analysis is started from zero harmonics (no starting-point

information). It is noteworthy that the CPU time required

for a pulsed-RF analysis is less than 180 s at the 4 dB

compression level. These results confirm the statement



24 ON MICROWAVE THEORY AND TECHNIQUES, VOL 40, NO 1, JANUARY 1992IEEE TRANSACTIONS

.—
l~D=O(BIock-Newton) +b=b b

500

400
1 I

Cputime 300
(s..)

200

100 -

o~

10 125 15 17.5 ’20 22,5 25

Peak RF input power (dBm)

Fuz. 9. performance ofasDarse-matrix analysis of thepower ampllfierun-
de; pulsed-RF exclt&ion. ‘ “

=

0.4 J

0.35

0.3

0.25

Power(W) 0.2

0.15

0.1
—

\

o 10 20 30 40 50 60 70 80 90 lW

Time (fis)

Fig. 10. Power envelopes of theinput andoutput RFpulses forthepowe~

amplifier witha 3-m long transmission Imeconnected to the output port.

made in Section IV, that the analysis based on the block-

diagonal Jacobian is usually very robust. The choice D =

4 was empirically found to represent an optimum. For D

> 4, no significant improvement of the power-handling

capabilities of the analysis algorithm is observed, On the

other hand, for D < 4 the analysis slows down consid-

erably at high power levels, while the speed advantage at

low power levels is negligible. For comparison, the curve

obtained for D = O (cm-responding to a block-Newton it-

eration) is also reported in Fig. 9. In this case the algo-

rithm is unable to converge at the nominal input level of

+19.3 dBm.

Fig. 10 shows the power envelopes [36] of the input

and output signals at the nominal peak input power level

of + 19.3 dBm (4 dB compression). The group delay of

the amplifier is about 0.43 ns, which cannot be appreci-

ated with the time scale used in Fig. 10. Thus, in order

to show the excellent phase control provided by the nu-

merical analysis, an ideal transmission line 3m long was

added between the output port and the load. The result,

as expected, is a 10 ns delay of the output pulse, which

is clearly evident in Fig. 10.

Note that it would be virtually impossible to carry out

the same transient analysis by time-domain techniques,

because of the radial microstrip stubs for which an accu-

rate characterization is only available in the frequency do-

main [34].

VI. BROADBAND OPTIMIZATION

In a sense, a nonlinear circuit is always a broadband

circuit because the spectrum of the steady-state wave-

forms always includes several discrete lines and thus cov-

ers a finite bandwidth. In this section, however, we shall

define as broadband [1] a circuit whose performance is

simultaneously specified for a number of independent

steady-state regimes having different spectra. Such spec-

tra are usually (but not necessarily) obtained from one an-

other by changing the frequencies of one or more of the

exciting sinusoidal signals. Thus for nonlinear circuit op-

timization the concept of design spectra represents the

natural extension of the familiar concept of design fre-

quencies encountered in linear circuit design. In turn, an

independent state vector is associated with each spectrum,

so that the set of problem unknowns includes all these

state vectors and the set P of optimizable parameters. The

latter may include linear and nonlinear subnetwork pa-

rameters as well as the impressed voltages of any of the

free sources. In this section we discuss the implementa-

tion of an efficient broadband optimization capability in

our general-purpose harmonic-balance simulator [1].

The electrical performance of a nonlinear circuit may

be described in terms of a set of network functions which

are dependent both on the electrical regime (i. e., the state

vector X) and on the optimizable parameters. A generic

network function is thus denoted by F(’ ‘(X, P), and a ge-

neric design goal is stated in the form

F:/n < F(L)(X, P) (32)

where the index i spans all the specifications and all the

design spectra. From a mathematical viewpoint, the op-

timization process can be viewed as the search for a set P

of variables for which the design goals are satisfied in the

best possible way, subject to the constraint that the state

lies on the manifold M = [X = X(P)] implicitly defined

by (6). In order to fulfill this constraint, prior to each ob-

jective function evaluation the circuit defined by the cur-

rent value of P is analyzed at each design spectrum by the

Newton-iteration based HB technique. The network func-

tions are then computed at each spectrum by a conven-

tional analysis of the linear subnetwork operating in the
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electrical regime defined by X(P). Thus for each design

goal the specification (32) may be associated with the er-

ror function

E(’)(p) = w(i) “ [F$]n – F[)(X(P), P)] (33)

where W(’) is a positive weight. A suitable choice for an

objective encompassing all the design goals is the gener-

alized 1Pfunction [38]

FOB(P) =

[

[’$[E(’)(P)]PI”P ‘fEmax20

{ 1

–l/p

– ~ [–E(’)(p)] -ID if Emdx <0
i

(34)

where Emax is the maximum error (in the algebraic sense),

and the superscript + indicates that the summation is ex-

tended to positive errors only. For p > 1 the objective is

differentiable, and can be minimized with respect to P by

an efficient gradient-based minirnizatin algorithm [39].

The program makes use of the quasi-Newton method dis-

cussed in [40].

As in the analysis case, the use of an exact formula for

the computation of the gradients is essential in order to

achieve the best performance of the optimization algo-

rithm [1], [41]. By means of (33) and (34), the derivative

of the objective with respect to a generic optimizable pa-

rameter P is directly related to the derivatives of the net-

work functions F(l) wrt. the same quantity. Any such de-

rivative will be denoted by the symbol D when it is taken

on the manifold M. We have

DF(i) af(i) ()a@) T
—. — + —.
DP ap ~= ,On,t ax

“ = [35)

P=...,, ‘p

In principle, exact methods arc available fclr the com-

putation of all terms in (35). First of all, differentiating

(6) yields

DX

m“
–[J(X)]-’ “ $ ‘ (36)

~ = const

where J is the Jacobian matrix of E with respect to X, as

in Section II. From (5) we get

aE~

ap

13Ek

ap

aE~

ap

—— # (cl~) u, (x) + : (0,) (37)

~= const

—— g (Q~) (38)

~= const

auk a Wk
= Y(flk) ~ + ~ (39)

Y= const
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where (37) has to be used for a linear subnetwork param-

eter, (38) for a source voltage, and (39) for a nonlinear

subnetwork parameter. The derivatives appearing on the

right-hand side of (39) can be evaluated as the Fourier

coefficients Of au /ap, aw /ap.

Since the network functions are obtained from a linear

subnetwork analysis, they are expressed in terms of the

voltage harmonics at the device ports, of the source volt-

ages, and of the admittance parameters yzj of an ‘‘ aug-

mented” linear subnetwork [42]. The latter is obtained by

cutting the load and source branches, and thus creating as

many additional ports. Thus a generic subvector of

i3F(’)/8X I~ = .On,t takes the form

~F(i)
=x

[

aF(I) 8 Re [Uk]

a Re [Z] p= .~”,~ k.S 8 Re [Uk] 8 Re [X,]

8F(i) 8 Im [Uk]
+

a Im [Uk] a Re [X,] 1
(40)

A similar equation holds for the derivative with respect to

Im [X,]. In (40) the derivatives of F(2) wrt. the voltage

harmonics at the device ports may be obtained explicitly

from the augmented linear subnetwork analysis. In turn,

the exact derivatives of the voltage harmonics wrt. the

state-variable harmonics are evaluated by (1 1), (12).

Finally, we may write

8F(i)

[[
=,7, z

8F(’) ay,j (~~)

ap
X = const

l,J ayg (ok) 8P 1
‘(*Y: (”k)]’41)

- x.const=d(+a~’42)
aF(i)

ap

where (41 ) has to be used for a linear subnetwork param-

eter, (42) for a source voltage, and (43) for a nonlinear

subnetwork parameter. Once again, the derivatives of I’(i )

with respect to yti and N may be obtained explicitly from

the augmented linear subnetwork analysis. If P is a linear

subnetwork parameter, the derivatives of the admittance

parameters with respect to P may be found (at least in

principle) by adjoint-network calculations [43]. Note that

in practice very few terms of the summations appearing
in (40)-(43) are nonzero for a typical network function.

Finally, it should be observed that in practice some of

the terms of the above derivatives may be more conve-

niently computed by numerical perturbations, without im-

pairing the accuracy of the gradient evaluation procedure.

A typical example is given by ayij /dP when the linear
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subnetwork admittance matrix is computed numerically

by electromagnetic methods.

An essential point is that a factorization of the Jacobian

is automatically known at each design spectrum from the

Newton iteration performed to analyze the nonlinear cir-

cuit for the current set of parameters P, and does not re-

quire any additional computation. Thus the Newton iter-

ation represents the best choice for a harmonic-balance

algorithm to be coupled with an optimization process,

since it makes automatically available the key information

required for the exact computation of the gradients. This

property is not shared by any other of the iteration schemes

that are commonly in use for solving the harmonic-bal-

ance equations. It is worth noting that another nonlinear

analysis technique that has been effectively coupled with

optimization, is the method of nonlinear currents [44],

with the usual restriction to weakly nonlinear situations.

The tradeoff here is between CPU time and generality of

application. With the harmonic-balance approach de-

scribed in this section, microwave circuits can be opti-

mized at any drive level. As an example, the program can

compute at nm time and directly optimize the gain

compression of an amplifier. This allows a power ampli-

fier to be optimized at a prescribed compression level,

e.g. * in order @ find the best compromise among outPut
power, efficiency, and transducer gain over a frequency

band.

Fig. 11 shows the circuit topology of a single-ended

FET gate mixer which will be used to monitor the per-

formance of the broadband optimization algorithm in a

typical application. The circuit simply consists of a com-

mon-source FET with a low-pass filter on the drain and a

two-section reactive matching network connected with the

gate. Both the RF and the LO signals are injected into the

gate. The FET is a small-signal device corresponding to

an Avantek 8251 with an lDss of 80 mA, once again de-

scribed by a modified Materka and Kacprzak model [37].

Fig. 12 shows the transducer conversion gain of the

mixer as a function of the IF frequency when a standard

Butterworth design is chosen for the IF filter, and arbi-

trary values of 1 nH and 1 pF are assigned to the induc-

tances and capacitances of the input matching network.

Starting from this point the circuit is optimized for a min-

imum conversion gain of 7.5 dB and a minimum input

return loss of 15 dB across an IF band ranging from 0.1

to 1.3 GHz. Performance specifications are assigned at 7

different IF values with a constant LO frequency of 8

GHz. The optimization variables are the inductances and

capacitances of the input matching network plus the gate

bias voltage, which is known to have a major influence

on the mixer performance.

The results obtained after 8 iterations are again given

in Fig. 12 for the transducer conversion gain, and in Fig.

13 for the RF input return loss. The nice equal-ripple be-

havior of the optimized performance and the small num-

ber of iterations are clear checks of the excellent numer-

ical behavior of the optimization algorithm. As a matter

of fact. the al~orithmic efficiency of this desizn mocedure

RFIN
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Parasitic

fF OUT. . . . . . .

[pp~l”m

—

Fig. 11. Schematic topology of a broadband FET gate mixer,
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for nonlinear circuits is very close to the performance we

are familiar with in linear circuit design, in the sense that

the required number of iterations for a given set of design

frequencies and a iziven number of o~timization variables, “. , L
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is pretty much the same in the two cases. In other words,

the ratio between a nonlinear and a linear design cost is

very close to the ratio between ii nonlinear and a linear

analysis cost of the same circuit topology. The overall

CPU time required by this optimization is about 130 s on

a SUN SPARCstation 2. Similar results were c~btained for

other typical nonlinear subsystems [1]. It is thus clear that

the numerical efficiency of the broadband optimization al-

gorithm is high enough to warrant a systematic use of this

technique at the workstation level.
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