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Abstract—The paper discusses the theoretical foundations and
the numerical performance of an advanced nonlinear circuit
simulator based on the piecewise harmonic-balance (HB) tech-
nique. The program incorporates updated versions of several
novel algorithmic concepts developed in the last few years. This
results in computational capabilities well ahead of the state of
the art of HB techniques as outlined even in recent review work.
The exact computation of the Jacobian matrix for Newton-
iteration based HB simulation, and the related conversion-
matrix technique for fast mixer analysis, are formulated in the
most general form available to date. Convergence problems at
high drive levels are solved by a parametric formulation of the
device models coupled with an advanced norm-reducing itera-
tion. A physics-based approximation allows the HB equations
to be effectively decoupled in many practical cases, thus bring-
ing large-size jobs such as pulsed-RF analysis well within the
reach of ordinary workstations. The exact Jacobian is used in
conjunction with an exact formula for the gradient of the ob-
jective function, to implement an eflicient broadband nonlinear
circuit optimization capability. Finally, a number of examples
are presented, in order to give the reader a feeling of the nu-
merical performance that the program can provide at the
workstation level.

I. INTRODUCTION

N THE last few years., the harmonic-balance (HB)

method has gained widespread acceptance among mi-
crowave engineers as a simulation tool for nonlinear cit-
cuits. The main advantages of this approach are its ability
to directly address the steady-state circuit operation under
single- or multiple-tone excitation, and its full compati-
bility with the characterization of the linear subnetwork
in the frequency domain, which is usually a prerequisite
for high-frequency applications. Also., harmonic balance
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[1] and in the statistical design [2] of nonlinear micro-
wave circuits.

In exchange for this, the HB method in its conventional
implementations suffers from a number of shortcomings
[3], which have traditionally restricted' its domain of
applicability to selected aspects of the general nonlinear
CAD problem. By harmonic balance, a nonlinear circuit
analysis is reduced to the solution of a nonlinear algebraic
system, which is usually obtained by some sort of itera-
tive procedure. In traditional HB simulators, as the excit-
ing signal levels are increased, the system becomes more
and more ill-conditioned, and the iteration slows down
and eventually fails. Thus it is usually taken for granted
that harmonic balance handles extremely nonlinear be-
havior poorly. A basic assumption of harmonic balance is
always that the circuit be excited by one or more sinusoi-
dal signals, so that all time-dependent quantities have a
periodic or quasi-periodic steady-state dependence on
time, and a same spectrum consisting of a finite set of
intermodulation products of the exciting tones. Thus it is
generally acknowledged that transient information cannot
be produced by harmonic-balance analysis. The size of
the solving system is equal to the number of state vari-
ables times the number of spectral lines. For multiple-
device circuits excited by multiple tones, this may lead to
nonlinear problems with thousands of unknowns, which
may be impossible to deal with by conventional tech-
niques. This fatally places an upper bound to the size of
the circuit problems that can be solved by the HB tech-
nique, from the standpoint of both memory occupation
and CPU time. One of the main challenges of harmonic-
balance simulation is the extension of this bound.

This paper describes an advanced HB simulator incor-
porating new algorithmic concepts whereby the above-
mentioned limitations of harmonic-balance analysis can
be effectively overcome in many practical applications.
The program makes use of the ‘‘piecewise’” technique
based on circuit decomposition [4]. This was preferred to
the nodal HB approach {5] because it leads to a solving
system much smaller in size [6], and allows the linear
subnetwork description to be refined to any desired extent
(e.g., by taking into account various kinds of disconti-
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nuities and couplings) without affecting the nonlinear
analysis cost. Section II of the paper reviews an advanced
formulation of the Newton-iteration based piecewise HB
technique, making use of the exact Jacobian matrix in the
general multitone analysis case. The same section also
shows that the HB analysis automatically produces the
fundamental information required for the noise and sta-
bility analysis of a nonlinear circuit. Section III demon-
strates that virtually any limitation of the power-handling
capabilities of harmonic-balance analysis can be elimi-
nated by resorting to a parametric form of the nonlinear
device equations coupled with an advanced norm-reduc-
ing mechanism. Section IV introduces a sparse-matrix ap-
proach explicitly tailored for the needs of the piecewise
technique, allowing many large simulation tasks involv-
ing several thousands of unknowns to be brought well
within the reach of ordinary engineering workstations.
Section V discusses how the combination of the extended
power-handling capabilities and of the sparse-matrix tech-
nique described in the preceding sections opens the way
to the analysis of strongly nonlinear circuits under
pulsed-RF conditions. This implies that transient infor-
mation may be produced by harmonic-balance analysis in
many cases of practical interest. Finally, Section VI shows
that the Newton-iteration based HB analysis can be suc-
cessfully coupled with an optimization algorithm, and that
the numerical optimization of broadband nonlinear cir-
cuits becomes possible in this way, with an algorithmic
efficiency comparable to that of linear circuit optimiza-
tion.

With the above features, this program is believed to
mark a significant advance over other previously reported
harmonic-balance simulators, and to provide a suitable
basis for the further extensions of nonlinear CAD capa-
bilities which will be required for the years to come.

II. NEWTON-ITERATION BASED HARMONIC-BALANCE
ANALYSIS

A. General Nonlinear Analysis

Let us consider a nonlinear microwave circuit operating
in a quasi-periodic electrical regime generated by the in-
termodulation of F sinusoidal tones of incommensurable
fundamental angular frequencies w,, Any signal a(f) sup-
ported by the circuit may be represented by the multiple
Fourier expansion

a(t) = Es Ay exp (jQ2) (1

where €, is a generic mixing or intermodulation (IM)
product of the fundamentals, i.e.,
F
Q= Z] ko, = k'o,. 2)

In (1), (2) k; is an integer harmonic number, k is an
F-vector of harmonic numbers, and m,, is the F-vector of
the fundamentals. The vector k in (2) spans a finite subset
S of the k-space (containing the origin) which will be con-

13

ventionally named the signal spectrum. The Fourier coef-
ficient A, will be named the harmonic of a(¢) at Q (or the
kth harmonic of a(¢)). The order of @ is defined as the £
norm of k. Since we want the signal (1) to be real, S must
be symmetrical with respect to the origin, and A_;, = A}.
We shall also denote by S™ the subset of S such that
=0forkeS™.

Let the nonlinear subnetwork be described by the gen-
eralized parametric equations [6]

N O . S
v(f) = u|x(1), a0’ E xp (1)
t(t)—W{x(r), 1’ T xp(t)} 3

where v(1), i (f) are vectors of voltages and currents at the
common ports, x (¢) is a vector of state variables and xp, (¢)
a vector of time-delayed state variables, i.e., xp, (f) = x;(¢
— 7,). The time delays 7, may be functions of the state
variables [7]. All vectors in (3) have a same size n, equal'
to the number of common (device) ports. This kind of
representation is very convenient from the physical view-
point, because it is in fact equivalent to a set of implicit
integro-differential equations in the port currents and volt-
ages. This allows an effective minimization of the number
of subnetwork ports [6], and, what is more important, re-
sults in extreme generality in device modeling capabili-
ties. A major practical implication of this approach will
be demonstrated in Section III.

The quasi-periodic electrical regime of the nonlinear
circuit resulting from a multitone excitation is completely
defined by a set of time-dependent state variables of the
form (1), or equivalently by the vector X of the real and
imaginary parts of their harmonics. The size of this vector
is Ny = nyny, where ny is the cardinality of the spectrum
S. The entries of X represent the problem unknowns. in
order to compute the harmonics Uy, W; of the nonlinear
subnetwork response (3) to the multitone excitation de-
scribed by a vector X, the program makes use of the mul-
tiple fast Fourier transform (MFFT). The general-purpose
application of this algorithm to nonlinear microwave cir-
cuit analysis was first reported in [8], and a detailed de-
scription of its implementation in a CAD environment is
given in [6]. The excellent performance of the MFFT has
been recently acknowledged by several authors (e.g., [9],
(10D).

The linear subnetwork may be represented by the fre-
quency-domain equation

Y(w) V(o) + Nw) + I(w) =0 “4)

where V(w), I(w) are vectors of voltage and current pha-
sors, Y (w) is the linear subnetwork admittance matrix, and
N(w) is a vector of Norton equivalent current sources.
Thus the set of complex harmonic-balance errors at a ge-
neric IM product € has the expression

E (X)) = Y() Up(X) + N(@) + W (X)) (5)
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The nonlinear analysis problem is reduced to the solu-
tion of a nonlinear algebraic system by imposing that all
the HB errors vanish. In order to avoid the use of negative
frequencies, the nonlinear solving system is formulated in
terms of a vector E of real and imaginary parts of the HB
errors given by (5) for k € §*, and is thus written as a
system of Ny real equations in Ny unknowns, namely

EX)=0 ©)

Although many iterative schemes are available for solv-
ing (6), the Newton-Raphson method has been preferred
for a number of reasons that will become apparent from
the following discussion. More precisely, we use a norm-
reducing Newton iteration defined by [11]

X(n+1) — X(n) _ O‘n{J[X(n)]}#l E[X(n)] (7)

where X is the nth iterate in the unknown X, and «,, is
a scalar damping parameter. For later convenience (see
Section IV) the Jacobian matrix of E with respect to X
(namely, J(X) in (7)) is partitioned frequency-wise into
2n,; X 2n, submatrices of the form (k, s € $™)

d Re [E;] 9 Re [E,]

9 Re [X,] 9 Im [X,]
Jis = . )]
9 Im [E,] 9 Im [E;]

d Re [X,] 0 Im [X;]

To ensure the best performance of the Newton algo-
rithm it is of paramount importance that the Jacobian ma-
trix of the HB errors with respect to the unknowns be
computed by an exact algorithm, rather than by numerical
perturbations. This has the twofold advantage of being
faster and much more accurate. The derivatives evaluated
by perturbations rapidly degrade as the number of nonlin-
ear devices and/or harmonics is increased. The required
number of iterations is in some way inversely related to
the accuracy of the Jacobian, so that beyond some thresh-
old, convergence begins to slow down and eventually fails
at all. As an example, let us consider the distributed
DGFET mixer schematically illustrated in Fig. 1 [12]. At
typical drive levels, the analysis time for this kind of cir-
cuit decreases by a factor of more than 100 when the per-
turbational derivatives are replaced by the exact ones.

The algorithm for the computation of the exact deriv-
atives is detailed below. General formulae for the piece-
wise analysis under multitone excitation were first pre-
sented in [6], and are further extended here to cover the
case of state-dependent time delays. From (5) we get

o, : au, oW,
—F _—y@Q
d Re [X,] ) T Re [X,] T I Re [X,]

3E, au, AW,
—k _ —y@ +
d Im [X,] © 5 m [X,] 8 Im[X,] ©

for all k, s € S*. The derivatives of the voltage and cur-
rent harmonics U, W, are found in the following way.

Drain -
y A o
W Gate 2 D_ FZ ”
o
RF 0 o .
N Gate 1 Zo

Fig. 1. Schematic topology of a distributed 4-stage DGFET mixer.

For the voltages (e.g.) we first introduce the Fourier ex-
pansions

ou .

g = pgd Cm,p exp (.]th)

du S P .

@ = g C, exp (2,0 (10)

where yo = x, ¥, = d"x/dt" (1 <= m < n), and S, will
be named the derivatives spectrum. When the nonlinear
device equations (3) are very complicated (or even nu-
merically defined), the time-domain derivatives on the
left-hand side of (10) may be computed numerically,
though the best performance of the algorithm is obtained
when exact closed-form expressions can be found for these
quantities.

The derivatives of the voltage harmonics with respect
to the state variable harmonics can now be obtained from
the first of (3) fork, se $*:

aUk n
[T S——— Z i QYT + (—=1Y'T
d Re [Xs] m=0 (] S) [ mk—s ( ) m.k+s]
aUk = S s > m m
0 Im [X,] - mZ::O](]QS) [Fm,k~s (=D Pm,k+s]
(11)
where
) ¢4
r ...=C,,_.+ 60 Z D 14
mk—s mk—s mpeS Ck—p —aXs
). ¢4
Fm,k-i—s = Cm‘k‘#s + 621 Pgs C?_pﬁi
O =m=n). (12)

and Xf,) is the set of pth harmonics of x,(#) (6 = Kro-
necker’s symbol). Although an exact expression has been
obtained for 3X 1’? /98X, it is so complicated that a numer-
ical computation of this quantity is usually preferred. In
the case of constant delays, this derivative reduces to 6;,
exp (—j€t) where 1 is the diagonal matrix of the time
delays [6]. Note that when k, s span the set §*, their
combinations k + s span a larger set of the k space, so
that the derivatives spectrum S; must usually be larger
than § in order to make available all the necessary infor-
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mation. Similar expressions hold for the derivatives of the
current harmonics.

The Newton-iteration based HB technique making use
of exact derivatives is very efficient from the numerical
viewpoint. As an example, let us assume that the mixer
in Fig. 1 is excited by a +13 dBm local oscillator (cor-
responding to a maximum of the conversion gain) at 3
GHz, and by a —~20 dBm RF signal at 3.51 GHz. 4 LO
harmonics and the associated sidebands are retained in the
simulation, for a total of 13 frequencies plus dc. Taking
into account only the essential parasitic effects results in
a circuit topology with 16 device ports and 57 circuit
nodes. In such conditions, the analysis requires about 75
CPU’s on a SUN SPARCstation 2 starting from zero har-
monics, and treating the Jacobian matrix as dense. A fur-
ther speedup can be obtained making use of the sparse-
matrix technique discussed in Section IV. Also, thanks to
the use of continuation, the algorithm becomes really fast
on a power sweep. As an example, if in the same mixer
analysis the RF power is swept from —20 to +3 dBm
with 1 dB steps (the upper bound corresponds to a gain
compression of about 1.2 dB), the average analysis cost
drops to about 10 s per point.

B. Frequency-Conversion Analysis

It has become customary to define frequency-conver-
sion analysis a linearized form of multitone intermodu-
lation analysis which becomes possible when a small in-
dependent signal is fed into a nonlinear circuit operated
in a large-signal periodic or quasi-periodic steady-state
regime. This is a very classic problem that has received a
number of treatments, and has been primarily applied in
the microwave field to mixer analysis under the assump-
tion of a small RF signal superimposed on a large LO
drive.

The basic mathematical tool for a frequency-conver-
sion analysis is given by the conversion equations of the
nonlinear subnetwork. Let us assume that a steady-state
of the form (1) is perturbed by the injection of a sinusoidat
signal of angular frequency w. If the perturbation is small
enough, it can be studied by linearizing the nonlinear sub-
network equations in the neighborhood of the unperturbed
steady state. This implies that the perturbed steady state
may be represented as a quasi-periodic regime containing
only intermodulation products of first order with respect
to the perturbation. A generic signal supported by the cir-
cuit thus takes the form

alt) = a,(f) + kZS Adpexp [jw + Q)7 (13)

" where a (f) is the unperturbed steady state given by (1).
Note that the signal on the right-hand side of (13) is com-
plex, but this has no influence on the analysis since we
are only interested in the relationships among the side-
band phasors.

Due to the linearization, the phasors of the voltage and
current harmonics at the sidebands are linearly related by
the so-called conversion equations of the nonlinear sub-
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network. If the nonlinear devices are described by the
parametric equations (3), the conversion equations are also
expressed in parametric form as follows [13]

AV = PAX

Al = QAX (14)

Specifically, these equations are linear maps between
the spectra of the perturbations on voltages (A V), cur-
rents (Al), and state variables (A X). The corresponding
linear operators P,  are called conversion matrices. From
(14) any equivalent circuit description such as the imped-
ance, admittance, or scattering conversion matrix can be
derived by conventional circuit algebra.

The conversion matrices may be computed by replacing
the perturbed expressions (13) of the state variables into
(3) and making use of (10). If we partition P and Q fre-
quency-wise into complex submatrices of size n; X n, (k,
s € §), we obtain the final result

n

Z {[](w + Qs)]m m.k—s

m=0

Pk,s

+ 8% Es CP-,B, (v + Qs)}

n

Qs = ZO {[j(w + Q)1"Dy k- s

m=

+ 8 Es D?_,B, (v + Qs)} (15)

where the D matrices are coefficients of Fourier expan-
sions similar to (10) for the derivatives of the second of
(3). The n; X n, diagonal matrices B appearing in (15)
are the coefficients of the Fourier expansions

exp {—j(w + Q) tlx, O}

= 2 B,(w + Q) exp (jQ,0).
peSa

(16)

In the case of constant time delays, B,(w + Q) reduces
to 53 exp [—j(w + Q,)1].

A comparison between (15) and (9), (11) makes evident
the close relationship existing between the conversion
matrix and the Jacobian matrix. The key point is that the
essential information required to generate the conversion
matrices (specifically, the coefficients C, D) is the same
needed for the computation of the Jacobian (the additional
Fourier transformations (16) are only required in the case
of state-dependent time delays). As it is well known, the
conversion matrices provide the computational basis for a
generalized noise and stability analysis of the nonlinear
circuit [13]. It is thus clear that the Newton-iteration based
harmonic-balance technique appears to be the best can-
didate for the development of a general-purpose nonlinear
CAD system integrating several advanced simulation ca-
pabilities in a most efficient way. We shall see in Section
VI that the same conclusion can also be extended to non-
linear circuit optimization.
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The frequency-conversion approach is usually compu-
tationally convenient with respect to the full nonlinear
analysis for the simulation of microwave mixers at low
RF power levels, especially for complex multiple-device
topologies. As an example, the analysis of the mixer in
Fig. 1 with an LO power of +13 dBm takes about 12 s
on a SUN SPARCstation 2. The results are virtually iden-
tical to those obtained from the full nonlinear analysis with
—20 dBm RF power. Of course, the dynamic range of the
mixer cannot be determined by this method.

III. ENHANCING THE POWER-HANDLING CAPABILITIES

The iteration (7) (as well as any other iterative scheme)
may exhibit convergence problems at high drive levels,
in a way strongly dependent on the particular problem
being considered. Specifically, some of the most impor-
tant factors affecting the speed of convergence or the abil-
ity to converge at all, are the degree of device nonlin-
earity, the number of intermodulating tones, and
topological aspects such as the number of nonlinear de-
vices and the way they are interconnected. For instance,
the exponential behavior of the conduction current of p-n
and Schottky barriers is usually a major source of numer-
ical ill-conditioning [14], and so is the unidirectional na-
ture of the nonlinear transconductance of microwave ac-
tive devices [11].

The exact computation of the Jacobian matrix described
in the previous section usually gives an important contri-
bution to the robustness of the analysis algorithm, but is
not sufficient to cover all cases of practical interest. In
order to improve the power-handling capabilities, many
harmonic-balance simulators make use of source step-
ping, which can be considered a CAD implementation of
the mathematical concept of continuation, or homotopy
[15]. Source stepping is computationally ineflicient,
though, unless a specific interest exists in the results of a
power sweep, since it expands a single analysis into a se-
quence of HB simulations. What is more important, this
technique is far from providing a general solution to the
problem, since in many ill-conditioned cases the step size
required to achieve convergence is too small, and the
analysis becomes exceedingly slow. As a limiting case,
the algorithm fails to converge if the step size drops below
the computer precision. In this section 'we describe a to-
tally different approach, based on a special parametric de-
scription of the device nonlinearities coupled with an ad-
vanced norm-reducing iteration scheme [16]. It will be
shown that this method virtually eliminates any limitation
of the power-handling capabilitics of HB analysis, with
no need for source stepping.

In order to illustrate the modeling approach we consider
the exponential junction law, which is by far one of the
most critical issues [14]. The conventional p-n or
Schottky-barrier current equation is

i(0) = Is{exp [ov (] — 1} 17)

At high drive levels the exponential function appearing in
(17) is a strong source of numerical ill-conditioning. To

replace (17) by a well-conditioned junction model for v
> 0, we resort to a parametric representation of the form
(3) making use of a non-conventional choice of the state
variable. Instead of the junction voltage v(f), we take as
the state variable a fictitious quantity x(#) which is iden-
tical to the junction voltage below some threshold V, >
0, but is defined as a linear function of the current above
V,. By requiring the voltage and current and their deriv-
atives to be continuous at x = V|, we obtain the following
set of equations:

v(t) = ulx(®)]
vV, + éln {1 +alx@ — WV}
= if V; < x@) (18)
x(®  ifx@) <V,
i = wlx@]

Igexp (aVD{1 + afx(®) — V\]} — I
ifV, < x@®
Ig{exp [ax(®)] — 1}

i

(19)
ifx@® < V.

Equations (18) and (19) give an exact parametric rep-
resentation of the forward current-voltage characteristic
(17) by means of functions which are very well condi-
tioned for all values of x(r). V| plays the role of a free
parameter to be suitably chosen in order to optimize the
performance of the HB algorithm. If we introduce the
slope G, = di/dv at v = V|, we obtain from (17) V, =
In (G1/al)/a. Experience shows that the choice G, =
1 results in excellent numerical behavior of the model in
most practical situations,

In order to show the beneficial effects of the above
method on the convergence properties of the Newton it-
eration, we resume a very famous convergence test con-
sisting of the local-oscillator analysis for a simple wave-
guide mixer containing a resistive diode as the only
nonlinear component. This test was first considered by
Kerr [17] and subsequently used for comparison by Hicks
and Khan [18], Camacho-Pefalosa [19], and Schiippert
[20]. The ability to converge is measured in terms of the
number of iterations required to achieve a minimum rel-
ative accuracy of 10 7% on all the spectral components, and
the rectified dc component of the diode current is taken
as an indication of the drive level. The analysis uses 16
local oscillator harmonics and the iteration is started from
zero harmonics in all cases.

Fig. 2 shows a performance comparison among a num-
ber of iterative approaches to the solution of the system
(6), that is: 1), Hicks and Khan’s constant-p fixed-point
iteration [18]; 2), Camacho-Pefalosa’s fixed-point itera-
tion with automatically updated convergence parameters
[19]: 3), Schiippert’s iteration making use of convergence
parameters related to the diode effective harmonic imped-
ances [20]; 4), an undamped Newton iteration (¢, = 1 in



RIZZOLI et al.. STATE-OF-THE-ART HARMONIC-BALANCE SIMULATION

¢ Hicks-Khan © Camacho
(p =0.025) Pefialosa

X Schiippert

5 Undamped ™ Undamped
Newton Newton +
parametric

modeling

1000
*
O © *
* <
‘e "‘Qooo“
o°
100 + °
©
N X X <o DD
X ETXX y
[} x X
u}
10 + EK)D " man ]
i o= . "Tawmss " o u"es” L
o
o
1 tr—rrrrt —r—t—rrrrrt Tt
0.1 1 - 10 100 1000
DC diode current (nA)

Fig. 2. Performance comparison of several harmonic-balance algorithms
in the solution of Kerr’s waveguide diode mixer.

(7)) based on the conventional model (17); 5), an un-
damped Newton iteration based on the parametric model
(18), (19). Typically, for each-iteration scheme there ex-
ists a critical power level beyond which convergence
slows down or is lost at all. In particular, the convergence
properties of the conventional Newton iteration are defi-
nitely poor: the iteration fails to converge above a dc cur-
rent of the order of 1.5 mA, corresponding to a drive level
of only 15 mW. Note, however, that the use of the para-
metric model results in a dramatic increase of the power-
handling capabilities of the analysis algorithm. In this case
the input power range for which convergence is achieved
is found to be substantially unbound, and the number of
required iterations remains fairly constant up to very high
power levels, with no need for source stepping. The range
shown in Fig. 2 goes up to a current level of 1 A, corre-
sponding to an input power of more than 1 kW, but this
does not represent an upper bound.

Generally speaking, this approach can be extended to
all major sources of ill-conditioning in the most com-
monly used nonlinear device models, including forward
conduction and breakdown effects in diodes and FET’s,
diffusion capacitances in p-n diodes and bipolar transis-
tors [16], [21], and so on. So this really represents the
seed of a generalized modeling philosophy marking a big
step towards the elimination of large-signal problems in
harmonic-balance analysis.

The other key mechanism of convergence improvement
that has been implemented in the program is norm reduc-
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tion. Given the basic iterative solution scheme (7), we
have a norm-reducing iteration when the damping param-
eter is updated at each step in such a way that the norm
of the residual error vector decreases with respect to the
previous step, i.e.,

IEXC* D < IEX®™]] (20)
The norm may be generally defined as
IEX®)l = VET[X™] A,E[X®] @1

where A, is an arbitrary positive-definite matrix. In prac-
tice, in order to get as much as possible from this basic
idea, the coefficient o, in (7) is chosen in such a way as
to minimize the norm along the direction of the iteration
update, at least approximately by a coarse one-dimen-
sional search.

The commonly adopted definition of norm is the Eu-
clidean or £, norm which is obtained from (21) when A,
is an identity matrix. With this choice, norm reduction
can be used in conjunction with virtually any iteration
scheme. As an example, Haywood and Chow [22] used
norm reduction to improve the performance of Hicks and
Khan’s fixed-point iteration [18]. With the Newton iter-
ation, superior performance may be obtained making use.
of the Newton-Update (NU) norm introduced by Yeager
and Dutton [11], which is defined by

An — {JT[X(n)]}_l{J[X(n)]}_l.

For computational purposes the NU norm is replaced by
the Euclidean norm of the undamped Newton update com-
puted at the new point with the Jacobian of the previous
step [11], i.e.,

IEIX" Plllyw = I{JIXPB'EX" 1l 23)

The NU norm was used in [11] in the time-domain sim-
ulation of nonlinear circuits, and has been found by the
present authors to be equally effective in harmonic-bal-
ance applications [16]. The damping mechanism based on
the Euclidean norm emphasizes a uniform or unweighted
reduction of the residual errors. This has been observed
[11] to be very dangerous for those situations where the
Jacobian matrix has large nonsymmetric off-diagonal
terms, since the steepest-descent direction of the norm
tends to become nearly orthogonal to the direction of the
Newton update. If this happens, typically in the early steps
of the iteration, no amount of damping can significantly
reduce the norm, the damping parameter tends to zero and
the iteration fails. Unfortunately, this situation is rather
commonplace in microwave circuit analysis by the har-
monic-balance method, since it is typical of nonreciprocal
gain elements such as FET’s or bipolar transistors, espe-
cially when cascaded in multistage topologies. With the
NU norm the residual errors are weighted by the elements
of the inverse Jacobian before computing the Euclidean
norm. The magnitude of a generic element of the resulting
vector indicates how far the corresponding unknown is
from achieving convergence, and may thus be interpreted
as a measure of the relative priority of such unknown in

(22)
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the overall solution process. The damping strategy thus
emphasizes a uniform reduction of such priorities through
a weighted reduction of the residual errors. The superior
performance of this approach is due to the fact that the
steepest-descent direction for the NU norm is always
coincident with the direction of the Newton update [11].
Thus even in the above-mentioned ill-conditioned cases
the danger of convergence failure in the early steps of the
iteration is most often eliminated. The damping factor
usually oscillates but does not approach zero along the
iteration.

In order to illustrate the impact of these techniques on
the power-handling capabilities of harmonic-balance
analysis, we report on a three-tone intermodulation test
for the distributed amplifier depicted in Fig. 3. This is a
simple small-signal device optimized for a 5 dB gain
across the 2-18 GHz band, with an output power of +20
dBm at the 1 dB compression point. The numerical results
are given in Fig. 4. The ability of the analysis algorithm
to converge is measured in terms of the number of itera-
tions required to achieve a relative accuracy of 107> on
all the intermodulation products of the three fundamen-
tals, up to the 4th order. This number is plotted in Fig. 4
against the available input power per tone P,,. The com-
parison is among four different implementations of the
Newton method, with and without parametric modeling
and NU-norm reduction; in all cases, the analysis is al-
ways started from zero harmonics without source step-
ping.

As usual, the plain Newton iteration using the conven-
tional models has poor behavior, and only converges in
the linear region, up to approximately P,, = +10 dBm.
This bound is expanded to P, = +24 dBm by using para-
metric modeling without norm reduction, and to P;, =
+50 dBm with norm reduction and conventional models.
Note that in this special case the convergence improve-
ment provided by parametric modeling is not as important
as that obtained by norm reduction. However, in the re-
gion where both methods are successful, the former is def-
initely faster since it does not require the iterative search
for the optimum ¢, in (7). Finally, coupling norm reduc-
tion with parametric modeling leads to an extremely ro-
bust analysis algorithm, which in the present case can
handie up to +100 dBm (10 MW) per tone, with a fairly
constant number of iterations. An interesting point is that
we need not increase the number of harmonics to achieve
convergence even at extremely high power levels, though
of course the accuracy of the solution will generally de-
pend on this number. Similar results have been obtained
for multistage cascaded topologies [16] and even for
class-C bipolar transistor amplifiers [23].

It is now clear that the techniques described in this sec-
tion can broadly overcome those power-handling limita-
tions that have long been considered an important disad-
vantage of harmonic balance in comparison with other
competing nonlinear analysis algorithms such as time-do-
main techniques. Although in practice we usually do not
have to handle the extreme power levels that are referred

)
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Fig. 3. Schematic topology of a distributed 3-stage FET amplifier.
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Fig. 4. Results of a 3-tone intermodulation analysis of the distributed am-
plifier.

to in Fig. 4, the availability of an absolutely reliable HB
analysis mechanism may be of paramount importance for
a successful performance of many nonlinear design tasks.
As an example, for an efficient optimization of broadband
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power circuits it is essential that the analysis algorithm
does never fail, even for circuit configurations that may
be very ill-conditioned and hardly meaningful, but many
nevertheless be encountered during the iterative search.
Also, in such cases one usually does not want to use
source stepping nor to increase the number of harmonics
beyond the minimum dictated by accuracy requirements,
in order to limit the computational effort. Thus the above-
described techniques can significantly broaden the do-
main of practical application of nonlinear CAD methods.

IV. SPARSE-MATRIX APPROACH TO LARGE-SIZE
PROBLEMS

The considerable advantages of the Newton iteration
making use of the exact Jacobian matrix as a numerical
approach to the solution of the harmonic-balance system
(6), have been demonstrated in the preceding sections.
However, the straightforward application of this tech-
nique may become problematic when the number of scalar
unknowns of the solving system becomes large, as it may
be the case for multiple-device circuits under multitone
excitation. This is due to the fact that the storage and fac-
torization of the Jacobian by ordinary means are practi-
cally impossible when the number of unknowns exceeds
some upper bound depending on the computer system in
use. As a typical example, let us consider the analysis of
two-tone intermodulation distortion in a mixer of the kind
shown in Fig. 1. Following Maas [24], the signal spec-
trum for this analysis is defined by

S 2
0=

kol + k5| = M

where the subscript 1 is used for the local oscillator. In
(24) N, is the number of LO harmonics, and M is the
maximum order of IM products of the two RF input tones
that are taken into account. For Ny = 4, M = 3 the signal
spectrum contains 225 lines, and the analysis requires
3600 unknowns (n; = 16). In this case, the storage of the
full Jacobian would require about 104 MB of memory,
and one factorization would take many hours of CPU time
on a typical workstation. Another class of problems re-
sulting in very large-size numerical jobs will be discussed
in the next section.

An obvious way to overcome these difficulties would
be to resort to large computer systems such as vector pro-
cessors [25]. However, in many practical applications
where extreme power levels are not of concern, the ex-
ploitation of sparse-matrix techniques makes it possible
to achieve a good compromise among power-handling ca-
pabilities, speed of convergence and memory occupation.
The key idea is to set to zero selected entries of the Ja-
cobian matrix according to some physical or mathematical
criterion, in order to enhance its sparsity and thus to re-
duce memory occupation and factorization time. In gen-
eral, computing the Jacobian with the highest possible ac-
curacy maximizes the robustness and minimizes the
number of iterations required for convergence of the

IA

(24)
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Newton algorithm. However, in large-size problems
where the factorization of the Jacobian represents a major
contribution to the overall analysis cost, the use of an ar-
tificially sparse Jacobian may be computationally conve-
nient, due to the tradeoff between number of iterations
and cost of each one.

The actual implementation of these ideas may change
considerably depending on the circuit analysis strategy.
With the nodal approach, the circuit is analyzed as a whole
without partitioning, and the node voltages are chosen as
state variables [5]. The number of scalar unknowns'is thus
much larger than with the piecewise technique: for in-
stance, the above-mentioned mixer IM analysis requires
12825 unknowns even if only the essential parasitic ef-
fects are accounted for (57 circuit nodes). In exchange for
this, the Jacobian matrix is naturally sparse because so is
the nodal admittance matrix, so that this method can rou-
tinely rely upon sparse-matrix techniques. A sparsity in-
crease can thus be obtained by neglecting those entries
that are smaller in magnitude than a specified threshold.
This has the immediate advantage of enhancing the effi-
ciency of the sparse-system solver [5].

With the piecewise method based on circuit decompo-
sition, the situation is somewhat more complicated, since
in this case the starting point is a completely dense Jaco-
bian. This implies that the achievable sparsity, which may
be typically of the order of 5 to 10% for medium-size
jobs, is not sufficient for satisfactory operation of standard
sparse-system solvers. A possible way of overcoming this
difficulty is to create a sparsity pattern with the two prop-
erties of having a very simple structure and being a priori
known [26], [27]. The basic idea for the method imple-
mented in our program is suggested by the expressions
(11) of the exact derivatives. As it was mentioned in Sec-
tion II, the derivatives spectrum S, used in the expansions
(10) is generally different from the signal spectrum S. At
very high drive levels all the coefficients appearing in (11)
must be taken into account to ensure good convergence,
so that S; O S. At lower drive levels, a good tradeoff
between power-handling capabilities and analysis cost can
usually be obtained by artificially reducing S, and setting

-to zero in (11) all the coefficients for which k + s € S,.

When the Jacobian is organized in submatrices frequency-
wise in the way described in Section II, what one gets is
a pattern of zero and nonzero submatrices of the form (8).
Each submatrix is essentially dense because so is the ad-
mittance matrix of the linear subnetwork.

Generally speaking, this technique is very powerful for
several reasons. Since the sparsity pattern is known a
priori, one can avoid the use of general-purpose sparse-
matrix solvers, and implement instead a family of spe-
cialized solvers, each individually optimized for a specific
matrix structure, and making use of specific rules for ad-
dressing the nonzeros. This leads to an effective optimi-
zation of both memory storage and CPU time, and thus
to an efficient performance of the sparse-system solvers
even with very moderate degrees of sparsity, say of the
order of 10%. Also, the sparse Jacobian can often be re-
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duced to very simple structures for which the generation
of fill-ins is a minimum or none at all. Finally, the struc-
ture of the sparse-matrix solver depends on the spectra S,
S, but is topology-independent, i.e., the same solver can
be applied to the analysis (with given spectra) of any non-
linear circuit, irrespective of its physical configuration.

A very important family of derivatives spectra is de-
fined by the following equations:

H
% k| =D

>
o
IA

(25)
k=0 (H+1<i<F)

where D, H are integers and H < F. Due to (11), under
the second of (25) the mixing products &, Q, are consid-
ered uncoupled unless |k;| = |s;] for H+ 1 < i < F,
because otherwise k + s ¢ S;. Now let the signal spec-
trum be partitioned into H-dimensional subsets such that
the mixing products belonging to each subset have the
same |k;| for H + 1 < i < F. Since under the second of
(25) any two mixing products belonging to different sub-
sets are uncoupled, the Jacobian matrix is reduced to a
block-diagonal form, and the solution of the linear system
required to compute the Newton update (7) is reduced to
the solution of a number of uncoupled systems of smaller
size, with a dramatic increase of numerical efficiency and
an equally significant memory saving. From (11) and the
first of (25) it is also evident that the parameter D repre-
sents the maximum difference between the orders of any
two IM products that are considered coupled under the
assumptions (25). It is thus possible to order the products
belonging to each subset in such a way that the corre-
sponding block subsystem be banded with a bandwidth
depending on D. The best ordering criterion depends on
the definition of the signal spectrum. This allows a band-
matrix solver to be used for each block subsystem, with
a further performance increase. If the first of (25) is sup-
pressed, all the block subsystems are dense.

In many cases of practical interest, (25) do not only
represent a mathematical assumption, but can be justified
on a sound physical basis. Consider for instance an F-tone
intermodulation problem, and assume for simplicity that
the time delays in (3) are constant. If the input frequencies
may be ordered in such a way that the last F — H + 1 are
very close to each other in a relative sense, that is,

H=i,j=F;1=k=sF
(26)
the IM products are clustered inside narrow frequency
windows separated by large gaps. This kind of situation
is very common in practice. In this case the spectrum may

be conveniently described in terms of an auxiliary set of
fundamentals defined by

lw; — w,| << w

W = w; (1l =i=<H)
H+1=<i=<F). 27

Due to (26), with the use of (27) each mixing product of
the form (2) is a linear combination of H high and F — H

o = |w, — wgl

low frequencies. If we now consider a generic waveform
(1) as a function defined on a multidimensional time space
[wit, wjt, wit, - -], then under (27) the last F — H time
variables are slowly changing with respect to the first H
ones. In such conditions the second of (25) takes the
meaning of a quasi-stationary approximation. This means
that the slow dependence on time of the derivatives (10)
through w, ¢ (i = H + 1) is considered negligible in com-
parison with the fast dependence through w,t, - - * wgtin
the time window (sufficiently longer than 27 /w,) used to
compute the FFT. From this approximation, the second
of (25) follows immediately. A similar conclusion can be
reached when the last F — H of the exciting frequencies
are naturally small with respect to the first H ones, as it
is the case in most modulation problems. In all such sit-
uations the decoupling of the ¢quations occurs almost nat-
urally, so that the Newton iteration based on the block-
diagonal Jacobian is usually very robust. The first of (25)
has simply the meaning of a possible truncation criterion
for the multiple Fourier expansion of the derivatives. In
any case the approximation is applied to the derivatives
only, so that the solution of (6) is exact, provided that
convergence be achieved.

In some situations, a structurally similar decoupling of
the Jacobian into diagonal blocks can also be arrived at
by the recently proposed [28] ‘‘frequency-windowing
harmonic-balance’” (FWHB) technique. The time-domain
quasi-stationary approximation leading to the second of
(25) is in a sense the dual of the assumption of constant
linear-subnetwork admittance in each frequency window
made by the FWHB [28], which is equivalent to consid-
ering Y(w) a slowly changing function of the ‘‘small”’
w,. Of course, (25) only represents one possible applica-
tion of the general MFFT-based sparse-matrix technique
discussed in this section.

The application of the sparse-matrix technique to the
above-mentioned mixer intermodulation problem is illus-
trated in Fig. 5. For this case we choose H = 1 in (25),
and partition the spectrum defined by (24) into one-di-
mensional subsets of size 2Ny + 1) X 2Ny + 1) in
terms of submatrices of the form (8). Each subset is char-
acterized by constant values of |k,|, |k;|. Furthermore, if
we choose D = 3 in (25) and order the IM products in
each subset for increasing values of k;, we obtain the
sparsity pattern depicted in Fig. 5, where shaded and
blank rectangles are representative of nonzero and zero
submatrices, respectively. As expected, the Jacobian is
reduced to a block-diagonal structure, and each uncou-
pled subsystem is banded (with bandwidth D in this spe-
cial case). In this way, the memory occupation of the Ja-
cobian drops to about 8 MB, which is compatible with the
memory resources of most typical engineering worksta-
tions. Also, the cost of one Newton iteration is reduced
by a factor of about 300 with respect to the dense-Jaco-
bian case on a SUN SPARCstation 2 in double-precision
arithmetics. The tradeoff with power-handling capabili-
ties is excellent for ordinary applications. With the spars-
ity pattern depicted in Fig. 5 the circuit can be analyzed
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= nonzero submatrix o zero submatrix

Fig. 5. Pattern of nonzero submatrices of the Jacobian for a 2-tone inter-
modulation analysis of the distributed mixer (H = 1, D = 3).

without convergence problems well beyond the LO power
level for which conversion gain is a maximum at low RF
power levels, and well beyond the 1 dB compression point
in maximum-gain conditions.

Fig. 6 shows the computed results of the mixer inter-
modulation distortion analysis with w,/27 = 3 GHz,
w,/2m = 3.51 GHz, w3/27 = 3.511 GHz. The (equal)
power levels of the two RF tones are swept from —20 to
—1 dBm in 1 dB steps, with the upper bound now corre-
sponding to a gain compression of about 1.3 dB because
of the two-tone RF excitation (see section II). The accu-
racy of the results was checked and found excellent by a
Cray analysis run with 8§ LO harmonics and intermodu-
lation products up to the 5th order [25]. The average anal-
ysis cost on the SUN SPARCstation 2 workstation is about
120 s per point. The same approach can be successfully
applied even to simulation problems of smaller numerical
size. As an example, a regular analysis of the same mixer
under the same conditions described in Section II (432
scalar unknowns) may be carried out with a derivatives
spectrum defined by (25) with H = 1, D = 1. The single
low-level analysis (Pig = +13 dBm, Prg = —20 dBm)
takes about 25 CPU s on the SUN 2, and thus becomes
cost-competitive with the frequency-conversion analysis.
In addition, the mixer dynamic range can be determined
in this way without any convergence problems.

An important limiting case of the sparse-matrix ap-
proach is obtained when the derivatives spectrum contains
the dc component only (D = 0 in (25)). This leads to the
so-called block-Newton iteration [29], whereby only cou-
plings between identical frequency components are taken
into account. Since this is a rather drastic approximation,
this kind of analysis has limited power-handling capabil-
ities, and is often -insufficient to establish the dynamic
range of typical nonlinear circuits. Nevertheless, this ap-

21

==+ 3-rd order IF intermodulation — IF output power
product

30 1

-40

0. 1
70 +
80 3 .

90 1

B S L S S
20 -18 -16 .-14 12 -10 -8 -6 -4 2 0
’ Available RF power per tone (dBm) - )

Fig. 6. Fundamental IF output at w, — w,',. and 3rd order IF intermodu-
lation product at 2w; — w, — w, for the distributed mixer under 2-toné RF
excitation. :

proach is very useful for the fast computation of some
important small-signal nonlinear quantities such as the 3rd
and 5th order intercept points. With the block-Newton it-
eration, both the memory occupation and the factorization
time of the Jacobian become negligible, and the har-
monic-balance analysis may become cost-competitive
with small-signal techniques such as Volterra series or the
related method of nonlinear currents [30], [31].

As a typical example, let us consider once again a three-
tone intermodulation analysis of the distributed amplifier
shown in Fig. 3 (6 device ports and 77 circuit nodes). At
low input power levels, say —10 dBm per tone, the com-
putation of near-carrier intermodulation products up to the
5th order by the block-Newton iteration coupled with the
multiple fast Fourier transform algorithm takes about 25
s on a SUN SPARCstation 2. What is more important,
the nonlinear aspects give only a minor contribution, of
the order of 24 percent, to the overall analysis cost, which
is dominated by the linear subnetwork analysis. It is thus
clear that the use of a different frequency-domain nonlin-
ear analysis approach could only result in a minor im-
provement of the simulation speed. Thus, although the
method of nonlinear currents (e.g., in the implementation
proposed by Maas [32]) is probably the fastest way of
carrying out a low-level multitone analysis, the block-
Newton HB technique in this and other similar cases can
reach a comparable efficiency. However, in the present
case convergence can be ‘obtained only up to a gain
compression level of about 0.4 dB even making use.of all
the methods for convergence improvement discussed in
Section III.

As it may be easily inferred from the numerical per-
formance information reported above, the sparse-matrix
approach described in this section can literally outperform
other more conventional harmonic-balance algorithms,
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including some commercial ones, with speedup factors
that may range up to two orders of magnitude or more for
relatively complex circuit topologies. It thus opens the
way to a number of advanced applications of the HB tech-
nique that would be hardly feasible by standard methods,
such as the frequency-domain transient simulations dis-
cussed in Section V.

V. PULSED-RF AND TRANSIENT ANALYSIS

The simulation of nonlinear microwave circuits oper-
ated under pulsed RF conditions is an intriguing problem
from the CAD viewpoint. In principle one could ob-
viously resort to time-domain simulators [33], which can
handle any signal waveform without restriction. How-
ever, the well-known limitations of time-domain tech-
niques in the treatment of passive circuits virtually restrict
this kind of approach to simple topologies only containing
lumped elements and elementary types of distributed
components. On the contrary, many practical microwave
circuits contain passive integrated components which can
only be characterized in the frequency domain by electro-
magnetic methods, especially at high frequencies [34].
For these cases a nonlinear analysis in pulsed RF condi-
tions is still an open problem.

When the pulses form a periodic sequence, a pulsed RF
regime is a special form of steady-state regime. It is thus
intuitive that numerical techniques explicitly aimed at
steady-state analysis, such as harmonic balance, should
represent a possible way to do the job. The purpose of
this section is to show that this kind of analysis is, indeed,
feasible making use of a harmonic-balance simulator in-
corporating the previously described capabilities. An in-
teresting point is that, for pulse durations long enough
with respect to the RF period, the analysis approach pre-
sented in this section also provides a direct way of per-
forming a transient analysis by harmonic-balance meth-
ods. It has been found that in the case of lumped-element
topologies that can be treated in the time domain, the re-
sults of our HB technique are consistent with those pro-
vided by classic time-domain simulators such as SPICE.

Let us consider a nonlinear circuit excited by an RF
sinusoidal source of angular frequency w; {(carrier) mod-
ulated by a periodic signal s(r) of period 27 /w,. For the
applications of interest in this section, s(7) is ideally a
sequence of rectangular pulses, which for practical pur-
poses is approximated by a truncated Fourier expansion.
Thus we have

N

s = 2 Se oxp (jhawr?) (28)

where S_;, = Sf. In practice, a non-ideal pulse wave-
form with finite rise and fall times [35] is used in order to
keep these quantities under control. As an example, in
Fig. 7 the sum of (28) with N = 50 is plotted against time
for a sequence of rectangular pulses having a duty cycle

of 30% and rise and fall times equal to 5% of the pulse
repetition time.

In agreement with (1), the unmodulated input signal is
represented by

v(®) = 2 Re [V exp (jwiD)] 29

so that the modulated excitation becomes

u(t) = v() s@

N
=2m{k§Wm&ﬁmLmﬁ+@%m} (30)

From a conceptual viewpoint, we can think of (30) as
being the output of an ideal amplitude modulator whose
two inputs are fed by (28) and (29). Thus a generic non-
linear circuit excited by (30) can be replaced by an aug-
mented circuit (obtained by connecting the ideal modu-
lator to the input port of the original one) excited by two
periodic sources of frequencies w;, w,. In general, the
analysis of a nonlinear circuit under pulsed RF conditions
can thus be treated as a two-tone IM analysis problem. In
the mixer case, an RF signal of the form (30) is super-
imposed on the local-oscillator regime, so that by a sim-
ilar argument the analysis can be reduced to a three-tone
IM problem.

In the two-tone case, a suitable definition of the signal
spectrum is [36]

IA

Sé{OSMd M
0<lk] =N

where M is the number of carrier harmonics to be consid-
ered in the CW analysis of the same circuit. For mixer
analysis a spectrum similar to (31) is repeated on each
side of every local-oscillator harmonic of interest.

For computational purposes, our harmonic-balance
simulator was modified to accept modulated sources be-
sides conventional CW sources as standard excitations.
The Fourier coefficients of the modulating signal are com-
puted once for all and are stored in the computer memory.
The RF source is simply defined by means of the complex
amplitude 2V; and of the indication that the source is
modulated. Then, according to (28), the program auto-
matically connects in series to the RF input port 2N + 1
sinusoidal sources of complex amplitudes 2V;S;, and fre-
quencies w; + kywy (0 < |ky| < N). At this stage the
multitone harmonic-balance analysis can proceed in the
way discussed in Section II. It is noteworthy that the pro-
gram also allows the modulation defined by (28) to be
applied to the bias sources. The two cases do not differ
conceptually nor computationally, and in particular the
intermodulation spectrum may always be defined by (31).
In this case the program connects in series to the bias port
of interest a dc source E,S, and N sinusoidal sources of
complex amplitudes 2E, S, at frequencies kyw, (1 < k,
= N), where E; is the unmodulated bias voltage. The
pulsed bias can also be offset in order to include circuits
periodically switched between two different bias levels.

@31
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Fig. 7. Approximation of a periodic sequence of rectangular pulses having 5% rise and fall tmes and 30% duty cycle
(50 harmonics).

This facility is intended to allow the simulation of a num-
ber of interesting events such as turnon transients in am-
plifiers and oscillators, and tuning transients in VCO’s.
Further work on these subjects will be reported else-
where.

The pulsed-RF analysis outlined in this section is a
rather ill-conditioned job from the numerical viewpoint.
The main numerical difficulties arise from the following
aspects.

1) The problem is strongly nonlinear because of the si-
multaneous occurrence of heavily driven devices (such as
saturated FET’s, or BJT’s in class-C operation) and mul-
titone excitation.

2) The number of spectral components to be balanced
is usually large. Relatively large values of N are required
to minimize the unwanted ripples produced by the trun-
cation of the series (28), and several carrier harmonics
must be considered for circuits operating in saturation.
The use of several hundreds of frequencies is thus cus-
tomary even for simple circuit topologies, and this often
leads to nonlinear solving systems with thousands of sca-
lar unknowns.

As a consequence, the advanced features described in
the previous sections usually represent a prerequisite for
the HB simulator to be able to carry out successfully this
kind of analysis with practically acceptable efficiency. In
particular, the mechanisms described in Section TII for en-
hancing the robustness of the iteration, and the sparse-
matrix techniques introduced in Section IV are of primary
importance. This will be illustrated by a typical example.

Let us consider a microstrip amplifier having the to-
pology schematically illustrated in Fig. 8. The FET is a
600 pm device described by a modified Materka and Kac-
przak model [37], and radial microstrip stubs are used both
in the RF matching sections and in the bias circuit. The
amplifier has a saturated power output (at the 4 dB gain-
compression level) of +25.3 dBm with 6 dB of associated
gain across a 2 GHz band centered around 10 GHz. The
input signal is a 10 GHz sinusoid modulated by a periodic
sequence of rectangular pulses having a pulse repetition
frequency of 10 MHz, rise and fall times of 5 ns, and a
duty cycle of 30% (see Fig. 7). The analysis is carried
out with the spectrum defined by (31) with M = 4 and N

FET +
Parasitics

Fig. 8. Schematic topology of a microstrip power amplifier using radial
stubs.

= 50, for a total of ny = 909 spectral lines. This corre-
sponds to 1818 scalar unknowns, and to a memory occu-
pation of 26.5 MB for the full Jacobian.

In spite of the simple circuit topology, this problem is
difficult to handle on a workstation with 16 MB of phys-
ical memory, because the data transfers to and from the
virtual memory make the Jacobian factorization process
very inefficient. Thus, for a general-purpose implemen-
tatin of the pulsed-RF analysis approach, the use of the
sparse-matrix technique discussed in Section IV is vir-
tually mandatory. The excellent results obtained by this
method making use of the derivatives spectrum (25) are
shown in Fig. 9. In this figure the analysis time on the
SUN 2 is plotted against the peak input power, for H =
1 and D = 4, With this choice the structure of the sparse
Jacobian is similar to the one shown in Fig. 5. The only
differences are that the number of uncoupled subsystems
is now equal to 51, and that each block subsystem has a
bandwidth of 4 in terms of nonzero submatrices. The
memory occupation of the Jacobian is only 0.52 MB. The
peak input power levels considered in Fig. 9 range from
+10.3 dBm, which is well inside the linear region (ap-
proximately 0.1 dB gain compression), up to +25.3 dBm,
which is far into the saturation region (0 dB gain level,
corresponding to 10 dB compression). In all cases the
analysis is started from zero harmonics (no starting-point
information). It is noteworthy that the CPU time required
for a pulsed-RF analysis is less than 180 s at the 4 dB
compression level. These results confirm the statement
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Fig. 9. Performance of a sparse-matrix ahalysis of the power amplifier un-
der pulsed-RF excitation.
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Fig. 10. Power envelopes of the input and output RF pulses for the power
amplifier with a 3-m long transmission line connected to the output port.

made in Section IV, that the analysis based on the block-
diagonal Jacobian is usually very robust. The choice D =
4 was empirically found to represent an optimum. For D
> 4, no significant improvement of the power-handling
capabilities of the analysis algorithm is observed. On the
other hand, for D < 4 the analysis slows down consid-
erably at high power levels. while the speed advantage at
low power levels is negligible. For comparison, the curve
obtained for D = 0 (corresponding to a block-Newton it-
eration) is also reported in Fig. 9. In this case the algo-
rithm is unable to converge at the nominal input level of
+19.3 dBm.

Fig. 10 shows the power envelopes [36] of the input

and output signals at the nominal peak input power level
of +19.3 dBm (4 dB compression). The group delay of
the amplifier is about 0.43 ns, which cannot be appreci-
ated with the time scale used in Fig. 10. Thus, in order
to show the excellent phase control provided by the nu-
merical analysis, an ideal transmission line 3m long was
added between the output port and the load. The result,
as expected, is a 10 ns delay of the output pulse, which
is clearly evident in Fig. 10.

Note that it would be virtually impossible to carry out
the same transient analysis by time-domain techniques,
because of the radial microstrip stubs for which an accu-
rate characterization is only available in the frequency do-
main {34].

VI. BROADBAND OPTIMIZATION

In a sense, a nonlinear circuit is always a broadband
circuit because the spectrum of the steady-state wave-
forms always includes several discrete lines and thus cov-
ers a finite bandwidth. In this section, however, we shall
define as broadband 1] a circuit whose performance is
simultaneously specified for a number of independent
steady-state regimes having different spectra. Such spec-
tra are usually (but not necessarily) obtained from one an-
other by changing the frequencies of one or more of the
exciting sinusoidal signals. Thus for nonlinear circuit op-
timization the concept of design spectra represents the
natural extension of the familiar concept of design fre-
quencies encountered in linear circuit design. In turn, an
independent state vector is associated with each spectrum,
so that the set of problem unknowns includes all these
state vectors and the set P of optimizable parameters. The
latter may include linear and nonlinear subnetwork pa-
rameters as well as the impressed voltages of any of the
free sources. In this section we discuss the implementa-
tion of an efficient broadband optimization capability in
our general-purpose harmonic-balance simulator [1].

The electrical performance of a nonlinear circuit may
be described in terms of a set of network functions which
are dependent both on the electrical regime (i.e., the state
vector X) and on the optimizable parameters. A generic
network function is thus denoted by F“)(X, P), and a ge-
neric design goal is stated in the form

Fl, = FYX, P) (32)

where the index i spans all the specifications and all the
design spectra. From a mathematical viewpoint, the op-
timization process can be viewed as the search for a set P
of variables for which the design goals are satisfied in the
best possible way, subject to the constraint that the state
lies on the manifold M = [X = X (P)] implicitly defined
by (6). In order to fulfill this constraint, prior to each ob-
jective function evaluation the circuit defined by the cur-
rent value of P is analyzed at each design spectrum by the
Newton-iteration based HB technique. The network func-
tions are then computed at each spectrum by a conven-
tional analysis of the linear subnetwork operating in the
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electrical regime defined by X(P). Thus for each design
goal the specification (32) may be associated with the er-
ror function

EOP) = wl
()

CIFoh - FOXP), Pl (33)

where w"’ is a positive weight. A suitable choice for an
objective encompassing all the design goals is the gener-
alized ¢, function [38]

+ 1/p
{Z [E“’(P)]”}

—1/p
—{Z[—E“(P)]“P} . i Epy <0

(34)

if B =0
Fog(P) =

where E,,, is the maximum error (in the algebraic sense),
and the superscript * indicates that the summation is ex-
tended to positive errors only. For p > 1 the objective is
differentiable, and can be minimized with respect to P by
an efficient gradient-based minimizatin algorithm [39].
The program makes use of the quasi-Newton method dis-
cussed in [40].

As in the analysis case, the use of an exact formula for
the computation of the gradients is essential in order to
achieve the best performance of the optimization algo-
rithm [1], [41]. By means of (33) and (34), the derivative
of the objective with respect to a generic optimizable pa-
rameter P is directly related to the derivatives of the net-
work functions F*) wrt. the same quantity. Any such de-
rivative will be denoted by the symbol D when it is taken
on the manifold M. We have

<aF<">>T
+ | =%
X = const aX

In principle, exact methods are available for the com-
putation of all terms in (35). First of all, diflerentiating
(6) yields

DF®  aF®

Dp aP

DX

DpP

(35)

P = const

DX _OE

P —-[JX)1! Y (36)

X = const

where J is the Jacobian matrix of E with respect to X, as
in Section II. From (5) we get

OE, ay aN

-— =—(Q X))+ —= @ 37
oP |, P( ©) Un(X) aP( MEENCY))
IE, _ON

— —(Q 38
P X = const a ( k) ( )
aEk . aUk 6Wk

k = V(@) =+ -k 39
P, ) 5p * 5 59)
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where (37) has to be used for a linear subnetwork param-
eter, (38) for a source voltage, and (39) for a nonlinear
subnetwork parameter. The derivatives appearing on the
right-hand side of (39) can be evaluated as the Fourier
coefficients of du /dP, dw /IP.

Since the network functions are obtained from a linear
subnetwork analysis, they are expressed in terms of the
voltage harmonics at the device ports, of the source volt-
ages, and of the admittance parameters y,; of an ‘‘aug-
mented’’ linear subnetwork [42]. The latter is obtained by
cutting the load and source branches, and thus creating as
many additional ports. Thus a generic subvector of
OF " /0X |p - const takes the form

aF(i)
3 Re [X,]

3 oF"” 3 Re [U;]
pecont keS| 3 Re [Uy] 8 Re [X;]

OFY 3 1Im [Uy]
8 Im [U,] 8 Re [Xs]} (40)

A similar equation holds for the derivative with respect to

Im [X,]. In (40) the derivatives of F) wrt. the voltage

harmonics at the device ports may be obtained explicitly

from the augmented linear subnetwork analysis. In turn,

the exact derivatives of the voltage harmonics wrt. the

state-variable harmonics are evaluated by (11), (12).
Finally, we may write

@ @ 9y, (Q
P P ay,, Q) 9P
F(t)
+ Q 41
(W W] o
AF® 9F® N
—_— = 42
P |, ke s{<aN(Qk)> aP (Q")} “2)
9F® 3 F© 3 Re [Uy]
P |, k s { 3 Re [Uk] oP

AFY 3 Im [U,]
0Im[U,] oP “3)

" where (41) has to be used for a linear subnetwork param-

eter, (42) for a source voltage, and (43) for a nonlinear
subnetwork parameter. Once again, the derivatives of F/ @
with respect to y; and N may be obtained explicitly from
the augmented linear subnetwork analysis. If P is a linear
subnetwork parameter, the derivatives of the admittance
parameters with respect to P may be found (at least in
principle) by adjoint-network calculations [43]. Note that
in practice very few terms of the summations appearing
in (40)-(43) are nonzero for a typical network function.
Finally, it should be observed that in practice some of
the terms of the above derivatives may be more conve-
niently computed by numerical perturbations, without im-
pairing the accuracy of the gradient evaluation procedure.
A typical example is given by dy; /0P when the linear



26 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 40. NO. ], JANUARY 1992

subnetwork admittance matrix is computed numerically
by electromagnetic methods.

An essential point is that a factorization of the Jacobian
is automatically known at each design spectrum from the
Newton iteration performed to analyze the nonlinear cir-
cuit for the current set of parameters P, and does not re-
quire any additional computation. Thus the Newton iter-
ation represents the best choice for a harmonic-balance
algorithm to be coupled with an optimization process,
since it makes automatically available the key information
required for the exact computation of the gradients. This
property is not shared by any other of the iteration schemes
that are commonly in use for solving the harmonic-bal-
ance equations. It is worth noting that another nonlinear
analysis technique that has been effectively coupled with
optimization, is the method of nonlinear currents [44],
with the usual restriction to weakly nonlinear situations.
The tradeoff here is between CPU time and generality of
application. With the harmonic-balance approach de-
scribed in this section, microwave circuits can be opti-
mized at any drive level. As an example, the program can
compute at run time and directly optimize the gain
compression of an amplifier. This allows a power ampli-
fier to be optimized at a prescribed compression level,
e.g., in order to find the best compromise among output
power, efficiency, and transducer gain over a frequency
band.

Fig. 11 shows the circuit topology of a single-ended
FET gate mixer which will be used to monitor the per-
formance of the broadband optimization algorithm in a
typical application. The circuit simply consists of a com-
mon-source FET with a low-pass filter on the drain and a
two-section reactive matching network connected with the
gate. Both the RF and the LO signals are injected into the
gate. The FET is a small-signal device corresponding to
an Avantek 8251 with an Ipgs of 80 mA, once again de-
scribed by a modified Materka and Kacprzak model [37].

Fig. 12 shows the transducer conversion gain of the
mixer as a function of the IF frequency when a standard
Butterworth design is chosen for the IF filter, and arbi-
trary values of 1 nH and 1 pF are assigned to the induc-
tances and capacitances of the input matching network.
Starting from this point the circuit is optimized for a min-
imum conversion gain of 7.5 dB and a minimum input
return loss of 15 dB across an IF band ranging from 0.1
to 1.3 GHz. Performance specifications are assigned at 7
different IF values with a constant LO frequency of 8
GHz. The optimization variables are the inductances and
capacitances of the input matching network plus the gate
bias voltage, which is known to have a major influence
on the mixer performance.

The results obtained after 8 iterations are again given
in Fig. 12 for the transducer conversion gain, and in Fig.
13 for the RF input return loss. The nice equal-ripple be-
havior of the optimized performance and the small num-
ber of iterations are clear checks of the excellent numer-
ical behavior of the optimization algorithm. As a matter
of fact, the algorithmic efficiency of this design procedure

FET +
Parasitics

Fig. 11. Schematic topology of a broadband FET gate muxer.
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Fig. 12. Starting-point and optimized transducer conversion gain of the
broadband mixer.
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Fig. 13. Starting-point and optimized RF input return loss of the broad-
band muxer.

for nonlinear circuits is very close to the performance we
are familiar with in linear circuit design, in the sense that
the required number of iterations for a given set of design
frequencies and a given number of optimization variables
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is pretty much the same in the two cases. In other words,
the ratio between a nonlinear and a linear design cost is
very close to the ratio between a nonlinear and a linear
analysis cost of the same circuit topology. The overall
CPU time required by this optimization is about 130 s on

a SUN SPARCstation 2. Similar results were obtained for
other typical nonlinear subsystems [1]. It is thus clear that
the numerical efficiency of the broadband optimization al-
gorithm is high enough to warrant a systematic use of this
technique at the workstation level.
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